Molecular Imaging and Biology

, Volume 19, Issue 5, pp 694–702 | Cite as

Imaging of Tumor-Associated Macrophages in a Transgenic Mouse Model of Orthotopic Ovarian Cancer

  • Huanhuan He
  • Alan C. Chiu
  • Masamitsu Kanada
  • Bruce T. Schaar
  • Venkatesh Krishnan
  • Christopher H. Contag
  • Oliver DorigoEmail author
Research Article



Tumor-associated macrophages (TAMs) are often associated with a poor prognosis in cancer. To gain a better understanding of cellular recruitment and dynamics of TAM biology during cancer progression, we established a novel transgenic mouse model for in vivo imaging of luciferase-expressing macrophages.


B6.129P2-Lyz2tm1(cre)Ifo/J mice, which express Cre recombinase under the control of the lysozyme M promoter (LysM) were crossed to Cre-lox Luc reporter mice (RLG), to produce LysM-LG mice whose macrophages express luciferase. Cell-type-specific luciferase expression in these mice was verified by flow cytometry, and via in vivo bioluminescence imaging under conditions where macrophages were either stimulated with lipopolysaccharide or depleted with clodronate liposomes. The distribution of activated macrophages was longitudinally imaged in two immunocompetent LysM-LG mouse models with either B16 melanoma or ID8 ovarian cancer cells.


In vivo imaging of LysM-LG mice showed luciferase activity was generated by macrophages. Clodronate liposome-mediated depletion of macrophages lowered overall bioluminescence while lipopolysaccharide injection increased macrophage bioluminescence in both the B16 and ID8 models. Tracking macrophages weekly in tumor-bearing animals after intraperitoneal (i.p.) or intraovarian (i.o.) injection resulted in distinct, dynamic patterns of macrophage activity. Animals with metastatic ovarian cancer after i.p. injection exhibited significantly higher peritoneal macrophage activity compared to animals after i.o. injection.


The LysM-LG model allows tracking of macrophage recruitment and activation during disease initiation and progression in a noninvasive manner. This model provides a tool to visualize and monitor the benefit of pharmacological interventions targeting macrophages in preclinical models.

Key words

Macrophages Bioluminescence Transgenic mice Ovarian cancer 



This work was supported by the Mary Lake Polan Gynecologic Oncology Endowment for Research (O. D.), the Vivian Scott Fellowship in Gynecologic Oncology (O. D.), the Dean Pizzo Stanford Cancer Center Research Award (O. D.), the Child Health Research Institute at Stanford (C. C.), and a generous gift from the Chambers Family Foundation for Excellence in Pediatric Research (C.C.).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11307_2017_1061_MOESM1_ESM.pdf (347 kb)
ESM 1 (PDF 347 kb)


  1. 1.
    Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    De Palma M, Lewis CE (2013) Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23:277–286CrossRefPubMedGoogle Scholar
  3. 3.
    Cook J, Hagemann T (2013) Tumour-associated macrophages and cancer. Curr Op Pharm 13:595–601CrossRefGoogle Scholar
  4. 4.
    Takaishi K, Komohara Y, Tashiro H et al (2010) Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. Cancer Sci 101:2128–2136CrossRefPubMedGoogle Scholar
  5. 5.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Solinas G, Marchesi F, Garlanda C et al (2010) Inflammation-mediated promotion of invasion and metastasis. Cancer Met Rev 29:243–248CrossRefGoogle Scholar
  9. 9.
    Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang M, He Y, Sun X et al (2014) A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res 7:19CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hagemann T, Wilson J, Burke F et al (2006) Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 176:5023–5032CrossRefPubMedGoogle Scholar
  12. 12.
    Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33:119–126CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Daldrup-Link H, Coussens LM (2012) MR imaging of tumor-associated macrophages. Oncoimmunology 1:507–509CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Daldrup-Link HE, Golovko D, Ruffell B et al (2011) MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res 17:5695–5704CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Clausen BE, Burkhardt C, Reith W et al (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265–277CrossRefPubMedGoogle Scholar
  16. 16.
    Cross M, Mangelsdorf I, Wedel A, Renkawitz R (1988) Mouse lysozyme M gene: isolation, characterization, and expression studies. Proc Natl Acad Sci U S A 85:6232–6236CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kanada M, Bachmann MH, Hardy JW et al (2015) Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci U S A 112:E1433–E1442PubMedPubMedCentralGoogle Scholar
  18. 18.
    Gonzalez-Gonzalez E, Ra H, Hickerson RP et al (2009) siRNA silencing of keratinocyte-specific GFP expression in a transgenic mouse skin model. Gene Ther 16:963–972CrossRefPubMedGoogle Scholar
  19. 19.
    Contag CH, Jenkins D, Contag PR, Negrin RS (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41–52CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Edinger M, Sweeney TJ, Tucker AA et al (1999) Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1:303–310CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chow A, Brown BD, Merad M (2011) Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol 11:788–798CrossRefPubMedGoogle Scholar
  22. 22.
    Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761CrossRefPubMedGoogle Scholar
  23. 23.
    Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Moughon DL, He H, Schokrpur S et al (2015) Macrophage blockade using CSF1R inhibitors reverses the vascular leakage underlying malignant ascites in late-stage epithelial ovarian cancer. Cancer Res 75:4742–4752CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Burnett SH, Kershen EJ, Zhang J et al (2004) Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J Leukoc Biol 75:612–623CrossRefPubMedGoogle Scholar
  27. 27.
    Evrard M, Chong SZ, Devi S et al (2015) Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L−/− reporter mouse by multiphoton intravital microscopy. J Leukoc Biol 97:611–619CrossRefPubMedGoogle Scholar
  28. 28.
    Geissmann F, Manz MG, Jung S et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8:533–544CrossRefPubMedGoogle Scholar
  30. 30.
    Pyonteck SM, Akkari L, Schuhmacher AJ et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Med 19:1264–1272CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schreiber HA, Loschko J, Karssemeijer RA et al (2013) Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J Exp Med 210:2025–2039CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Long KB, Beatty GL (2013) Harnessing the antitumor potential of macrophages for cancer immunotherapy. Oncoimmunology 2:e26860CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Guiducci C, Vicari AP, Sangaletti S et al (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446CrossRefPubMedGoogle Scholar
  35. 35.
    Ribas A, Wolchok JD (2013) Combining cancer immunotherapy and targeted therapy. Curr Op Immunol 25:291–296CrossRefGoogle Scholar
  36. 36.
    Garris C, Pittet MJ (2013) Therapeutically reeducating macrophages to treat GBM. Nature Med 19:1207–1208CrossRefPubMedGoogle Scholar
  37. 37.
    Chitu V, Stanley ER (2006) Colony-stimulating factor-1 in immunity and inflammation. Curr Op Immunol 18:39–48CrossRefGoogle Scholar
  38. 38.
    Sasmono RT, Oceandy D, Pollard JW et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163CrossRefPubMedGoogle Scholar
  39. 39.
    Hume DA (2011) Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity. J Leukoc Biol 89:525–538CrossRefPubMedGoogle Scholar
  40. 40.
    Fantin A, Vieira JM, Gestri G et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Clarke S, Greaves DR, Chung LP et al (1996) The human lysozyme promoter directs reporter gene expression to activated myelomonocytic cells in transgenic mice. Proc Natl Acad Sci U S A 93:1434–1438CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Keshav S, Chung P, Milon G, Gordon S (1991) Lysozyme is an inducible marker of macrophage activation in murine tissues as demonstrated by in situ hybridization. J Exp Med 174:1049–1058CrossRefPubMedGoogle Scholar
  43. 43.
    Fenrich KK, Weber P, Rougon G, Debarbieux F (2013) Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury. J Physiol 591:4895–4902CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© World Molecular Imaging Society 2017

Authors and Affiliations

  1. 1.Departments of Obstetrics and GynecologyStanford University School of MedicineStanfordUSA
  2. 2.Departments of PediatricsStanford University School of MedicineStanfordUSA
  3. 3.Departments of Microbiology and ImmunologyStanford University School of MedicineStanfordUSA
  4. 4.Departments of RadiologyStanford University School of MedicineStanfordUSA

Personalised recommendations