Molecular Imaging and Biology

, Volume 19, Issue 2, pp 315–322 | Cite as

Radiomic Analysis using Density Threshold for FDG-PET/CT-Based N-Staging in Lung Cancer Patients

  • Paul Flechsig
  • Philipp Frank
  • Clemens Kratochwil
  • Gerald Antoch
  • Daniel Rath
  • Jan Moltz
  • Michael Rieser
  • Arne Warth
  • Hans-Ulrich Kauczor
  • Lawrence H. Schwartz
  • Uwe Haberkorn
  • Frederik L. Giesel
Research Article



Mediastinal nodal (N)-staging done by integrated 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) positron emission tomography/x-ray computed tomography (PET/CT) in lung cancer patients is not always accurate. In order to reduce the need for invasive staging procedures, additional surrogate parameters for the detection of malignant lymph node infiltration would be helpful. The purpose of this study was to evaluate if radiomic semi-automated density profiling in mediastinal lymph nodes can improve preclinical N-staging, irrespective of the specific lung cancer entity.


This retrospective study was approved by the institutional review board. Two hundred forty-eight histologically proven lymph nodes in 122 lung cancer patients were investigated. In malignantly infiltrated lymph nodes, the specific lung cancer entity was histologically classified; benign lymph nodes were histologically classified as benign. Non-contrast enhanced [18F]FDG-PET/CT was performed before surgery/biopsy. Lymph node analyses were performed on the basis of FDG uptake and volumetric CT histogram analysis for metric lymph node sampling.


Of the 248 lymph nodes, 118 were benign, 130 malignant. Malignant lymph nodes had a significantly higher median CT density (32.4 Hounsfield units (HU) (min 5.4/max 77.5 HU)) compared to benign lymph nodes (9.3 HU (min −49.5/max 60.4 HU, p < 0.05), irrespective of the histological subtype. The discrimination between different malignant tumour subtypes by means of volumetric density analysis failed. Irrespective of the malignant subtype, a possible cutoff value of 20 HU may help differentiate between benign and malignant lymph nodes.


Density measurements in unclear mediastinal and hilar lymph nodes with equivocal FDG uptake in PET might serve as a possible surrogate parameter for N-staging in lung cancer patients, irrespective of the specific lung cancer subtype. This could also help to find possible high yield targets in cases where invasive lymph node staging is necessary.

Key words

Lung cancer Staging FDG/PET-CT Radiomics 


  1. 1.
    Kratochwil C, Haberkorn U, Giesel FL (2010) PET/CT for diagnostics and therapy stratification of lung cancer. Radiologe 50:684–691CrossRefPubMedGoogle Scholar
  2. 2.
    Abramyuk A, Appold S, Zöphel K et al (2012) Quantitative modifications of TNM staging, clinical staging and therapeutic intent by FDG-PET/CT in patients with non small cell lung cancer scheduled for radiotherapy—a retrospective study. Lung Cancer 78:148–152CrossRefPubMedGoogle Scholar
  3. 3.
    Tournoy KG, Keller SM Annema JT (2012) Mediastinal staging of lung cancer: novel concepts. Lancet Oncol 13:e221–e229CrossRefPubMedGoogle Scholar
  4. 4.
    Rami-Porta R, Call S (2012) Invasive staging of mediastinal lymph nodes: mediastinoscopy and remediastinoscopy. Thorac Surg Clin 22:177–189CrossRefPubMedGoogle Scholar
  5. 5.
    Flechsig P, Kratochwil C, Schwartz LH et al (2014) Quantitative volumetric CT-histogram analysis in N-staging of [18F]FDG-equivocal patients with lung cancer. J Nucl Med 55:559–564CrossRefPubMedGoogle Scholar
  6. 6.
    Goeckenjan G, Sitter H, Thomas M et al (2011) Prevention, diagnosis, therapy, and follow-up of lung cancer. Interdisciplinary guideline of the German Respiratory Society and the German Cancer Society—abridged version. Pneumologie 65:e51–e75CrossRefPubMedGoogle Scholar
  7. 7.
    Shao T, Yu L, Li Y, Chen M (2015) Density and SUV ratios from PET/CT in the detection of mediastinal lymph node metastasis in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi 18:155–160PubMedGoogle Scholar
  8. 8.
    Flechsig P, Dadrich M, Bickelhaupt S et al (2012) LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-beta and BMP-associated proinflammatory and proangiogenic signals. Clin Cancer Res 18:3616–3627CrossRefPubMedGoogle Scholar
  9. 9.
    Flechsig P, Choyke P, Kratochwil C et al (2016) Increased x-ray attenuation in malignant vs. benign mediastinal nodes in an orthotopic model of lung cancer. Diagn Interv Radiol 22:35–39CrossRefPubMedGoogle Scholar
  10. 10.
    Jensen TH, Bech M, Binderup T et al (2013) Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography. PLoS One 8:e54047CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Toloza EM, Harpole L, McCrory DC (2003) Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest 123:137S–146SCrossRefPubMedGoogle Scholar
  12. 12.
    Birim O, Kappetein AP, Stijnen T, Bogers AJ (2005) Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer. Ann Thorac Surg 79:375–382CrossRefPubMedGoogle Scholar
  13. 13.
    Schaefer NG, Hany TF, Taverna C et al (2004) Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging—do we need contrast-enhanced CT? Radiology 232:823–829CrossRefPubMedGoogle Scholar
  14. 14.
    Gould MK, Kuschner WG, Rydzak CE et al (2003) Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med 139:879–892CrossRefPubMedGoogle Scholar
  15. 15.
    Hellwig D, Baum RP, Kirsch C (2009) FDG-PET, PET/CT and conventional nuclear medicine procedures in the evaluation of lung cancer: a systematic review. Nuklearmedizin 48:59–69, quiz N8-9 PubMedGoogle Scholar
  16. 16.
    Silvestri GA, Gould MK, Margolis ML et al (2007) Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest 132:178S–201SCrossRefPubMedGoogle Scholar
  17. 17.
    Beyer F, Buerke B, Gerss J et al (2010) Prediction of lymph node metastases in NSCLC. Three dimensional anatomical parameters do not substitute FDG-PET-CT. Nuklearmedizin 49:41–48, quiz N1 PubMedGoogle Scholar
  18. 18.
    Tournoy KG, Maddens S, Gosselin R et al (2007) Integrated FDG-PET/CT does not make invasive staging of the intrathoracic lymph nodes in non-small cell lung cancer redundant: a prospective study. Thorax 62:696–701CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47:207–214CrossRefPubMedGoogle Scholar
  20. 20.
    Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216CrossRefGoogle Scholar
  21. 21.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247CrossRefPubMedGoogle Scholar
  22. 22.
    Yankelevitz DF, Reeves AP, Kostis WJ et al (2000) Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology 217:251–256CrossRefPubMedGoogle Scholar
  23. 23.
    Heussel CP, Meier S, Wittelsberger S et al (2007) Follow-up CT measurement of liver malignoma according to RECIST and WHO vs. volumetry. Röfo 179:958–964PubMedGoogle Scholar
  24. 24.
    Fabel M, Bolte H, von Tengg-Kobligk H et al (2011) Semi-automated volumetric analysis of lymph node metastases during follow-up—initial results. Eur Radiol 21:683–692CrossRefPubMedGoogle Scholar
  25. 25.
    Puesken M, Buerke B, Gerss J et al (2010) Prediction of lymph node manifestations in malignant lymphoma: significant role of volumetric compared with established metric lymph node analysis in multislice computed tomography. J Comput Assist Tomogr 34:564–569CrossRefPubMedGoogle Scholar
  26. 26.
    Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA (2005) The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg 130:151–159CrossRefPubMedGoogle Scholar
  27. 27.
    Cuaron J, Dunphy M, Rimner A (2013) Role of FDG-PET scans in staging, response assessment, and follow-up care for non-small cell lung cancer. Front Oncol 2:208CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Brown RS, Leung JY, Kison PV et al (1999) Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 40:556–565PubMedGoogle Scholar
  29. 29.
    Goeckenjan G, Sitter H, Thomas M et al (2011) Prevention, diagnosis, therapy, and follow-up of lung cancer: interdisciplinary guideline of the German Respiratory Society and the German Cancer Society. Pneumologie 65:39–59CrossRefPubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2016

Authors and Affiliations

  • Paul Flechsig
    • 1
    • 2
    • 3
  • Philipp Frank
    • 1
  • Clemens Kratochwil
    • 1
  • Gerald Antoch
    • 4
  • Daniel Rath
    • 1
  • Jan Moltz
    • 5
  • Michael Rieser
    • 6
  • Arne Warth
    • 3
    • 7
  • Hans-Ulrich Kauczor
    • 2
    • 3
  • Lawrence H. Schwartz
    • 8
  • Uwe Haberkorn
    • 1
    • 9
  • Frederik L. Giesel
    • 1
    • 9
  1. 1.Department of Nuclear MedicineUniversity Hospital HeidelbergHeidelbergGermany
  2. 2.Department of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZLHeidelbergGermany
  4. 4.Department of Diagnostic and Interventional RadiologyUniversity DusseldorfDusseldorfGermany
  5. 5.Fraunhofer MEVISInstitute for Medical Imaging ComputingBremenGermany
  6. 6.Department of Nuclear Medicine and EndocrinologyKlinikum KlagenfurtKlagenfurtAustria
  7. 7.Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
  8. 8.Department of RadiologyColumbia University Medical CentreNew YorkUSA
  9. 9.Clinical Cooperation Unit, Department of Nuclear MedicineDKFZHeidelbergGermany

Personalised recommendations