Advertisement

Molecular Imaging and Biology

, Volume 19, Issue 1, pp 1–9 | Cite as

Whole-Brain Microscopy Meets In Vivo Neuroimaging: Techniques, Benefits, and Limitations

  • Markus Aswendt
  • Martin Schwarz
  • Walid M. Abdelmoula
  • Jouke Dijkstra
  • Stefanie DedeurwaerdereEmail author
Review Article

Abstract

Magnetic resonance imaging, positron emission tomography, and optical imaging have emerged as key tools to understand brain function and neurological disorders in preclinical mouse models. They offer the unique advantage of monitoring individual structural and functional changes over time. What remained unsolved until recently was to generate whole-brain microscopy data which can be correlated to the 3D in vivo neuroimaging data. Conventional histological sections are inappropriate especially for neuronal tracing or the unbiased screening for molecular targets through the whole brain. As part of the European Society for Molecular Imaging (ESMI) meeting 2016 in Utrecht, the Netherlands, we addressed this issue in the Molecular Neuroimaging study group meeting. Presentations covered new brain clearing methods, light sheet microscopes for large samples, and automatic registration of microscopy to in vivo imaging data. In this article, we summarize the discussion; give an overview of the novel techniques; and discuss the practical needs, benefits, and limitations.

Key words

In vivo neuroimaging MRI Pet Clarity Brain clearing Light sheet microscopy Image registration Brain atlas 

Notes

Acknowledgments

We wish to thank all participants for the lively discussion during the study group meeting. MA and MS were financially supported by grants from the German Research Foundation DFG (AS464/1-1 and SFB 1089); WA by the Dutch-LSH framework (Cyttron II grant FES0908); and SD by BOF UAntwerpen, the Research Foundation Flanders (FWO) (grant numbers 1.5.110.14N, G.0586.12, G.A009.13N), and the Queen Elisabeth Medical Foundation for Neurosciences.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1:3CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hoehn M, Aswendt M (2013) Structure-function relationship of cerebral networks in experimental neuroscience: contribution of magnetic resonance imaging. Exp Neurol 242:65–73CrossRefPubMedGoogle Scholar
  3. 3.
    Massoud T, Gambhir S (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580CrossRefPubMedGoogle Scholar
  4. 4.
    Giovacchini G, Squitieri F, Esmaeilzadeh M, et al. (2011) PET translates neurophysiology into images: a review to stimulate a network between neuroimaging and basic research. J Cell Physiol 226:948–961CrossRefPubMedGoogle Scholar
  5. 5.
    Alexander GM, Rogan SC, Abbas AI, et al. (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63:27–39CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Boyden ES, Zhang F, Bamberg E, et al. (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268CrossRefPubMedGoogle Scholar
  7. 7.
    Richardson D, Lichtman J (2015) Clarifying tissue clearing. Cell 162:246–257CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Spalteholz W (1914) U ber das Durchsichtigmachen von menschlichen und tierischen Pra paraten und seine theoretischen Bedingungen, nebst Anhang.Google Scholar
  9. 9.
    Dodt H-U, Leischner U, Schierloh A, et al. (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4:331–336CrossRefPubMedGoogle Scholar
  10. 10.
    Ertürk A, Mauch CP, Hellal F, et al. (2012) Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat Med 18:166–171CrossRefGoogle Scholar
  11. 11.
    Becker K, Jährling N, Saghafi S, et al. (2012) Chemical clearing and dehydration of GFP expressing mouse brains. PLoS One 7:e33916CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ertürk A, Becker K, Jährling N, et al. (2012) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 7:1983–1995CrossRefPubMedGoogle Scholar
  13. 13.
    Schwarz MK, Scherbarth A, Sprengel R, et al. (2015) Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains. PLoS One 10:e0124650CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tsai PS, Kaufhold JP, Blinder P, et al. (2009) Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J Neurosci 29:14553–14570CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Costantini I, Ghobril J-PP, Di Giovanna AP, et al. (2015) A versatile clearing agent for multi-modal brain imaging. Sci Rep 5:9808CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Meglinski IV, Churmakov DY, Bashkatov AN, et al. (2004) The enhancement of confocal images of tissues at bulk optical immersion. arXiv preprint physics/0401104Google Scholar
  17. 17.
    Aoyagi Y, Kawakami R, Osanai H, et al. (2015) A rapid optical clearing protocol using 2,2′-thiodiethanol for microscopic observation of fixed mouse brain. PLoS One 10:e0116280CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chiang A-SS, Lin W-YY, Liu H-PP, et al. (2002) Insect NMDA receptors mediate juvenile hormone biosynthesis. Proc Natl Acad Sci U S A 99:37–42CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yang B, Treweek JB, Kulkarni RP, et al. (2014) Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158:945–958CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hama H, Kurokawa H, Kawano H, et al. (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14:1481–1488CrossRefPubMedGoogle Scholar
  21. 21.
    Susaki EA, Tainaka K, Perrin D, et al. (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157:726–739CrossRefPubMedGoogle Scholar
  22. 22.
    Chung K, Deisseroth K (2013) CLARITY for mapping the nervous system. Nat Methods 10:508–513CrossRefPubMedGoogle Scholar
  23. 23.
    Tomer R, Ye L, Hsueh B, Deisseroth K (2014) Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 9:1682–1697CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chung K, Wallace J, Kim S-YY, et al. (2013) Structural and molecular interrogation of intact biological systems. Nature 497:332–337CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim S-Y, Cho J, Murray E, et al. (2015) Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc Natl Acad Sci 112:E6274–E6283CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Silvestri L, Costantini I, Sacconi L, Pavone F (2016) Clearing of fixed tissue: a review from a microscopist’s perspective. J Biomed Opt 21:081205–081205CrossRefPubMedGoogle Scholar
  27. 27.
    Niedworok CJ, Schwarz I, Ledderose J, et al. (2012) Charting monosynaptic connectivity maps by two-color light-sheet fluorescence microscopy. Cell Rep 2:1375–1386CrossRefPubMedGoogle Scholar
  28. 28.
    Renier N, Wu Z, Simon DJ, et al. (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159:896–910CrossRefPubMedGoogle Scholar
  29. 29.
    Li J, Czajkowsky D, Li X, Shao Z (2015) Fast immuno-labeling by electrophoretically driven infiltration for intact tissue imaging. Sci Rep 5:10640CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Murray E, Cho JH, Goodwin D, et al. (2015) Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163:1500–1514CrossRefPubMedGoogle Scholar
  31. 31.
    Sylwestrak E, Rajasethupathy P, Wright M, et al. (2016) Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell 164:792–804CrossRefPubMedGoogle Scholar
  32. 32.
    Silvestri L, Sacconi L, Pavone F (2013) The connectomics challenge. Funct Neurol 28:167–173PubMedPubMedCentralGoogle Scholar
  33. 33.
    Ugolini G (2010) Advances in viral transneuronal tracing. J Neurosci Meth 194:2–20CrossRefGoogle Scholar
  34. 34.
    Ekstrand MI, Enquist LW, Pomeranz LE (2008) The alpha-herpes viruses: molecular pathfinders in nervous system circuits. Trends Mol Med 14:134–140CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Song CK, Enquist LW, Bartness TJ (2005) New developments in tracing neural circuits with herpes viruses. Virus Res 111:235–249CrossRefPubMedGoogle Scholar
  36. 36.
    Wickersham IR, Finke S, Conzelmann K-KK, Callaway EM (2007) Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4:47–49CrossRefPubMedGoogle Scholar
  37. 37.
    Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18:617–623CrossRefPubMedGoogle Scholar
  38. 38.
    Rancz EA, Franks KM, Schwarz MK, et al. (2011) Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. Nat Neurosci 14:527–532CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ragan T, Sylvan JD, Kim KH, et al. (2007) High-resolution whole organ imaging using two-photon tissue cytometry. J Biomed Opt 12:014015CrossRefPubMedGoogle Scholar
  40. 40.
    Ragan T, Kadiri LR, Venkataraju KU, et al. (2012) Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 9:255–258CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Li A, Gong H, Zhang B, et al. (2010) Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 330:1404–1408CrossRefPubMedGoogle Scholar
  42. 42.
    Gong H, Zeng S, Yan C, et al. (2013) Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. NeuroImage 74:87–98CrossRefPubMedGoogle Scholar
  43. 43.
    Leischner U, Zieglgänsberger W, Dodt H-UU (2009) Resolution of ultramicroscopy and field of view analysis. PLoS One 4:e5785CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Huisken J, Stainier DY (2007) Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt Lett 32:2608–2610CrossRefPubMedGoogle Scholar
  45. 45.
    Klar TA, Jakobs S, Dyba M, et al. (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Betzig E, Patterson GH, Sougrat R, et al. (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645CrossRefPubMedGoogle Scholar
  47. 47.
    Chen F, Tillberg P, Boyden E (2015) Expansion microscopy. Science 1260088Google Scholar
  48. 48.
    Mattes D, Haynor DR, Vesselle H, et al. (2003) PET-CT image registration in the chest using free-form deformations. IEEE Trans Med Imaging 22:120–128CrossRefPubMedGoogle Scholar
  49. 49.
    Foskey M, Davis B, Goyal L, et al. (2005) Large deformation three-dimensional image registration in image-guided radiation therapy. Phys Med Biol 50:5869–5892CrossRefPubMedGoogle Scholar
  50. 50.
    Sundaram TA, Gee JC (2005) Towards a model of lung biomechanics: pulmonary kinematics via registration of serial lung images. Med Image Anal 9:524–537CrossRefPubMedGoogle Scholar
  51. 51.
    Ourselin S, Roche A, Subsol G, et al. (2001) Reconstructing a 3D structure from serial histological sections. Image Vis Comput 19:25–31CrossRefGoogle Scholar
  52. 52.
    Klein S, Staring M, Murphy K, et al. (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205CrossRefPubMedGoogle Scholar
  53. 53.
    Lee S, Wolberg G, Shin SY (1997) Scattered data interpolation with multilevel B-splines. IEEE Trans Vis Comput Graph 3:228–244CrossRefGoogle Scholar
  54. 54.
    Rueckert D, Sonoda LI, Hayes C, et al. (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18:712–721CrossRefPubMedGoogle Scholar
  55. 55.
    Rohde GK, Aldroubi A, Dawant BM (2003) The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Trans Med Imaging 22:1470–1479CrossRefPubMedGoogle Scholar
  56. 56.
    Thévenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7:27–41CrossRefPubMedGoogle Scholar
  57. 57.
    Viola P, Wells, MW (1995) Fifth international conference on computer vision. doi:10.1109/ICCV.1995.466930Google Scholar
  58. 58.
    Maes F, Collignon A, Vandermeulen D, et al. (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198CrossRefPubMedGoogle Scholar
  59. 59.
    Maintz JB, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2:1–36CrossRefPubMedGoogle Scholar
  60. 60.
    Rueckert D, Aljabar P (2010) Nonrigid registration of medical images: theory, methods, and applications [applications corner. IEEE Signal Process Mag 27:113–119CrossRefGoogle Scholar
  61. 61.
    Hill DL, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46:R1–45CrossRefPubMedGoogle Scholar
  62. 62.
    Vandenberghe ME, Hérard A-SS, Souedet N, et al. (2016) High-throughput 3D whole-brain quantitative histopathology in rodents. Sci Rep 6:20958CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hébert F, Grand’maison M, Ho M-KK, et al. (2013) Cortical atrophy and hypoperfusion in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 34:1644–1652CrossRefPubMedGoogle Scholar
  64. 64.
    Nozari A, Dilekoz E, Sukhotinsky I, et al. (2010) Microemboli may link spreading depression, migraine aura, and patent foramen ovale. Ann Neurol 67:221–229CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bjorklund LM, Sánchez-Pernaute R, Chung S, et al. (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99:2344–2349CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Boska MD, Lewis TB, Destache CJ, et al. (2005) Quantitative 1H magnetic resonance spectroscopic imaging determines therapeutic immunization efficacy in an animal model of Parkinson’s disease. J Neurosci 25:1691–1700CrossRefPubMedGoogle Scholar
  67. 67.
    Neumann-Haefelin T, Kastrup A, de Crespigny A, et al. (2000) Serial MRI after transient focal cerebral ischemia in rats: dynamics of tissue injury, blood-brain barrier damage, and edema formation. Stroke 31:1965–1972 discussion 1972–3CrossRefPubMedGoogle Scholar
  68. 68.
    Liu Y, D’Arceuil HE, Westmoreland S, et al. (2007) Serial diffusion tensor MRI after transient and permanent cerebral ischemia in nonhuman primates. Stroke 38:138–145CrossRefPubMedGoogle Scholar
  69. 69.
    Aljabar P, Heckemann RA, Hammers A, et al. (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46:726–738CrossRefPubMedGoogle Scholar
  70. 70.
    Abdelmoula W, Carreira R, Shyti R, et al. (2014) Automatic registration of mass spectrometry imaging data sets to the Allen brain atlas. Anal Chem 86:3947–3954CrossRefPubMedGoogle Scholar
  71. 71.
    Lein ES, Hawrylycz MJ, Ao N, et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176CrossRefPubMedGoogle Scholar
  72. 72.
    Carreira R, Shyti R, Balluff B, et al. (2015) Large-scale mass spectrometry imaging investigation of consequences of cortical spreading depression in a transgenic mouse model of migraine. J Am Soc Mass Spectrom 26:853–861CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Škrášková K, Khmelinskii A, Abdelmoula WM, et al. (2015) Precise anatomic localization of accumulated lipids in Mfp2 deficient murine brains through automated registration of SIMS images to the Allen brain atlas. J Am Soc Mass Spectrom 26:948–957CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069.Google Scholar
  75. 75.
    Renier N, Adams E, Kirst C, et al. (2016) Mapping of brain activity by automated volume analysis of immediate early genes. Cell. doi: 10.1016/j.cell.2016.05.007 PubMedGoogle Scholar
  76. 76.
    Johnson GA, Badea A, Brandenburg J, et al. (2010) Waxholm space: an image-based reference for coordinating mouse brain research. NeuroImage 53:365–372CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hawrylycz M, Baldock R, Burger A, et al. (2011) Digital atlasing and standardization in the mouse brain. PLoS Comput Biol 7:e1001065CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Dorr AE, Lerch JP, Spring S, et al. (2008) High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. NeuroImage 42:60–69CrossRefPubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2016

Authors and Affiliations

  • Markus Aswendt
    • 1
  • Martin Schwarz
    • 2
  • Walid M. Abdelmoula
    • 3
  • Jouke Dijkstra
    • 3
  • Stefanie Dedeurwaerdere
    • 4
    Email author
  1. 1.In-vivo-NMR LaboratoryMax Planck Institute for Metabolism ResearchCologneGermany
  2. 2.Department of EpileptologyUniversity of BonnBonnGermany
  3. 3.Department of Radiology, Division of Image ProcessingLeiden University Medical CenterLeidenThe Netherlands
  4. 4.Experimental Laboratory Translational Neurosciences and Otolaryngology, Department of Translational NeurosciencesUniversity of AntwerpAntwerpBelgium

Personalised recommendations