Molecular Imaging and Biology

, Volume 18, Issue 5, pp 686–696 | Cite as

Comparative Study of Tumor Targeting and Biodistribution of pH (Low) Insertion Peptides (pHLIP® Peptides) Conjugated with Different Fluorescent Dyes

  • Ramona-Cosmina Adochite
  • Anna Moshnikova
  • Jovana Golijanin
  • Oleg A. Andreev
  • Natallia V. Katenka
  • Yana K. Reshetnyak
Research Article

Abstract

Purpose

Acidification of extracellular space promotes tumor development, progression, and invasiveness. pH (low) insertion peptides (pHLIP® peptides) belong to the class of pH-sensitive membrane peptides, which target acidic tumors and deliver imaging and/or therapeutic agents to cancer cells within tumors.

Procedures

Ex vivo fluorescent imaging of tissue and organs collected at various time points after administration of different pHLIP® variants conjugated with fluorescent dyes of various polarity was performed. Methods of multivariate statistical analyses were employed to establish classification between fluorescently labeled pHLIP® variants in multidimensional space of spectral parameters.

Results

The fluorescently labeled pHLIP® variants were classified based on their biodistribution profile and ability of targeting of primary tumors. Also, submillimeter-sized metastatic lesions in lungs were identified by ex vivo imaging after intravenous administration of fluorescent pHLIP® peptide.

Conclusions

Different cargo molecules conjugated with pHLIP® peptides can alter biodistribution and tumor targeting. The obtained knowledge is essential for the design of novel pHLIP®-based diagnostic and therapeutic agents targeting primary tumors and metastatic lesions.

Key words

Imaging Tumor acidity Fluorescent-guided surgery Targeting of submillimeter metastatic lesions 

Supplementary material

11307_2016_949_MOESM1_ESM.pdf (1.2 mb)
ESM 1(PDF 1278 kb)

References

  1. 1.
    Damaghi M, Wojtkowiak JW, Gillies RJ (2013) pH sensing and regulation in cancer. Front Physiol 4:370CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gatenby RA, Gawlinski ET, Gmitro AF et al (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66:5216–23CrossRefPubMedGoogle Scholar
  3. 3.
    Gatenby RA, Smallbone K, Maini PK et al (2007) Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer 97:646–53CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hashim AI, Zhang X, Wojtkowiak JW et al (2011) Imaging pH and metastasis. NMR Biomed 24:582–91PubMedPubMedCentralGoogle Scholar
  5. 5.
    Chiche J, Brahimi-Horn MC, Pouyssegur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14:771–94CrossRefPubMedGoogle Scholar
  6. 6.
    Parks SK, Chiche J, Pouyssegur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13:611–23CrossRefPubMedGoogle Scholar
  7. 7.
    Andreev OA, Engelman DM, Reshetnyak YK (2010) pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Mol Membr Biol 27:341–52CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Andreev OA, Engelman DM, Reshetnyak YK (2014) Targeting diseased tissues by pHLIP insertion at low cell surface pH. Front Physiol 5:97CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Andreev OA, Engelman DM, Reshetnyak YK (2009) Targeting acidic diseased tissue: new technology based on use of the pH (low) insertion peptide (pHLIP). Chim Oggi 27:34–7PubMedPubMedCentralGoogle Scholar
  10. 10.
    Weerakkody D, Moshnikova A, Thakur MS et al (2013) Family of pH (low) insertion peptides for tumor targeting. Proc Natl Acad Sci U S A 110:5834–9CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Karabadzhak AG, Weerakkody D, Wijesinghe D et al (2012) Modulation of the pHLIP transmembrane helix insertion pathway. Biophys J 102:1846–55CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Andreev OA, Karabadzhak AG, Weerakkody D et al (2010) pH (low) insertion peptide (pHLIP) inserts across a lipid bilayer as a helix and exits by a different path. Proc Natl Acad Sci U S A 107:4081–6CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Reshetnyak YK, Segala M, Andreev OA, Engelman DM (2007) A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers. Biophys J 93:2363–72CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Reshetnyak YK, Andreev OA, Segala M et al (2008) Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane. Proc Natl Acad Sci U S A 105:15340–5CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vavere AL, Biddlecombe GB, Spees WM et al (2009) A novel technology for the imaging of acidic prostate tumors by positron emission tomography. Cancer Res 69:4510–6CrossRefPubMedGoogle Scholar
  16. 16.
    Karabadzhak AG, An M, Yao L et al (2014) pHLIP-FIRE, a cell insertion-triggered fluorescent probe for imaging tumors demonstrates targeted cargo delivery in vivo. ACS Chem Biol 9:2545–53CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Daumar P, Wanger-Baumann CA, Pillarsetty N et al (2012) Efficient (18)F-labeling of large 37-amino-acid pHLIP peptide analogues and their biological evaluation. Bioconjug Chem 23:1557–66CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cheng CJ, Bahal R, Babar IA et al (2015) MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518:107–10CrossRefPubMedGoogle Scholar
  19. 19.
    Cruz-Monserrate Z, Roland CL, Deng D et al (2014) Targeting pancreatic ductal adenocarcinoma acidic microenvironment. Sci Rep 4:4410CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Adochite RC, Moshnikova A, Carlin SD et al (2014) Targeting breast tumors with pH (low) insertion peptides. Mol Pharm 11:2896–905CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tapmeier TT, Moshnikova A, Beech J et al (2015) The pH low insertion peptide pHLIP Variant 3 as a novel marker of acidic malignant lesions. Proc Natl Acad Sci U S A 112:9710–5CrossRefPubMedGoogle Scholar
  22. 22.
    Reshetnyak YK, Yao L, Zheng S et al (2011) Measuring tumor aggressiveness and targeting metastatic lesions with fluorescent pHLIP. Mol Imaging Biol 13:1146–56CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Loja MN, Luo Z, Greg Farwell D et al (2013) Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer. Int J Cancer 132:1613–23CrossRefPubMedGoogle Scholar
  24. 24.
    Luo Z, Loja MN, Farwell DG et al (2014) Widefield optical imaging of changes in uptake of glucose and tissue extracellular pH in head and neck cancer. Cancer Prev Res (Phila) 7:1035–44CrossRefGoogle Scholar
  25. 25.
    Macholl S, Morrison MS, Iveson P et al (2012) In vivo pH imaging with (99m)Tc-pHLIP. Mol Imaging Biol 14:725–34CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Viola-Villegas NT, Carlin SD, Ackerstaff E et al (2014) Understanding the pharmacological properties of a metabolic PET tracer in prostate cancer. Proc Natl Acad Sci U S A 111:7254–9CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand OaksGoogle Scholar
  28. 28.
    Tao K, Fang M, Alroy J, Sahagian GG (2008) Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 8:228CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–39CrossRefPubMedGoogle Scholar
  30. 30.
    Eckhardt BL, Parker BS, van Laar RK et al (2005) Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res 3:1–13PubMedGoogle Scholar
  31. 31.
    Serganova I, Rizwan A, Ni X et al (2011) Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype. Clin Cancer Res 17:6250–61CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–44CrossRefGoogle Scholar
  33. 33.
    Pulaski BA, Ostrand-Rosenberg S (2001) Mouse 4T1 breast tumor model. Curr Protoc Immunol Chapter 20:Unit 20 22.Google Scholar
  34. 34.
    Yang S, Zhang JJ, Huang XY (2012) Mouse models for tumor metastasis. Methods Mol Biol 928:221–8PubMedPubMedCentralGoogle Scholar
  35. 35.
    Keereweer S, Van Driel PB, Snoeks TJ et al (2013) Optical image-guided cancer surgery: challenges and limitations. Clin Cancer Res 19:3745–54CrossRefPubMedGoogle Scholar
  36. 36.
    Keereweer S, Kerrebijn JD, van Driel PB et al (2011) Optical image-guided surgery—where do we stand? Mol Imaging Biol 13:199–207CrossRefPubMedGoogle Scholar
  37. 37.
    Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–34CrossRefPubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2016

Authors and Affiliations

  • Ramona-Cosmina Adochite
    • 1
  • Anna Moshnikova
    • 1
  • Jovana Golijanin
    • 1
  • Oleg A. Andreev
    • 1
  • Natallia V. Katenka
    • 2
  • Yana K. Reshetnyak
    • 1
  1. 1.Physics DepartmentUniversity of Rhode IslandKingstonUSA
  2. 2.Department of Computer Sciences and Statistics, University of Rhode IslandKingstonUSA

Personalised recommendations