Skip to main content
Log in

In Vivo Evaluation of a Bombesin Analogue Labeled with Ga-68 and Co-55/57

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to apply an analogue of bombesin, NOTA-AMBA, labeled with Co-55 or Ga-68, for preclinical imaging of prostate cancer.

Procedures

The peptide NOTA-AMBA was labeled with Ga-68 or Co-55 by microwave irradiation. Biodistribution in xenograft mice (PC3) was performed at 1, 4, and 24 h (only cobalt at 24 h) using a fixed amount of peptide. Four weeks post-inoculation, xenograft mice were positron emission tomography/X-ray computed tomography scanned after tail vein injection of [68Ga]NOTA-AMBA or [55Co]NOTA-AMBA.

Results

Labeling with Ga-68 and Co-55/57 was achieved in yields greater than 90 %. A radiochemical purity (RCP) of 95 and 90 % were obtained for Ga-68 and Co-55, respectively. Both radiopeptides showed high uptake in the intestines, stomach, pancreas, and in the tumor ([68Ga]NOTA-AMBA, 10.3 %ID/g at 1 h to 6.4 %ID/g at 4 h; [57Co]NOTA-AMBA, 8.2 %ID/g at 1 h to 5.3%ID/g at 24 h). Normal tissue cleared over time improving tumor-to-background ratios.

Conclusions

NOTA-AMBA was labeled in high yields and RCP with Ga-68 and Co-55/57. High tumor uptake in a subcutaneous mouse prostate cancer model was observed. At 24 h, [55/57Co]NOTA-AMBA showed better tumor-to-organ ratios than [68Ga]NOTA-AMBA at both 1 and 4 h post-injection. Hence, for imaging, [55Co]NOTA-AMBA was found to be superior compared to [68Ga]NOTA-AMBA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ananias H, de Jong I, Dierckx R et al (2008) Nuclear imaging of prostate cancer with gastrin-releasing-peptide- receptor targeted radiopharmaceuticals. Curr Pharm Des 14:3033–3047

    Article  CAS  PubMed  Google Scholar 

  2. Fani M, Maecke HR, Okarvi SM (2012) Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics 2:481–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fani M, Maecke HR (2012) Radiopharmaceutical development of radiolabelled peptides. Eur J Nucl Med Mol Imaging 39(Suppl 1):S11–S30

    Article  PubMed  Google Scholar 

  4. Schottelius M, Wester H-J (2009) Molecular imaging targeting peptide receptors. Methods 48:161–177

    Article  CAS  PubMed  Google Scholar 

  5. Schroeder RPJ, van Weerden WM, Bangma C et al (2009) Peptide receptor imaging of prostate cancer with radiolabelled bombesin analogues. Methods 48:200–204

    Article  CAS  PubMed  Google Scholar 

  6. Smith CJ, Volkert WA, Hoffman TJ (2005) Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 32:733–740

    Article  CAS  PubMed  Google Scholar 

  7. Varasteh Z, Velikyan I, Lindeberg G et al (2013) Synthesis and characterization of a high-affinity NOTA-conjugated bombesin antagonist for GRPR-targeted tumor imaging. Biocojugate Chem 24:1144–1153

    Article  CAS  Google Scholar 

  8. Gourni E, Mansi R, Jamous M et al (2014) N-terminal modifications improve the receptor affinity and pharmacokinetics of radiolabeled peptidic gastrin-releasing peptide receptor antagonists: examples of 68Ga- and 64Cu-labeled peptides for PET imaging. J Nucl Med 55:1719–1725

    Article  CAS  PubMed  Google Scholar 

  9. Kroll C, Mansi R, Braun F et al (2013) Hybrid bombesin analogues: combining an agonist and an antagonist in defined distances for optimized tumor targeting. J Am Chem Soc 135:16793–16796

    Article  CAS  PubMed  Google Scholar 

  10. Mansi R, Wang X, Forrer F et al (2009) Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 15:5240–5249

    Article  CAS  PubMed  Google Scholar 

  11. Mansi R, Wang X, Forrer F et al (2011) Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging 38:97–107

    Article  CAS  PubMed  Google Scholar 

  12. Breeman WA, Hofland LJ, de Jong M et al (1999) Evaluation of radiolabelled bombesin analogues for receptor-targeted scintigraphy and radiotherapy. Int J Cancer 81:658–665

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Hu X, Liu H et al (2013) A comparative study of radiolabeled bombesin analogs for the PET imaging of prostate cancer. J Nucl Med 54:2132–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Asti M, Iori M, Capponi PC et al (2014) Influence of different chelators on the radiochemical properties of a 68-gallium labelled bombesin analogue. Nucl Med Biol 41:24–35

    Article  CAS  PubMed  Google Scholar 

  15. Koumarianou E, Loktionova NS, Fellner M et al (2012) 44Sc-DOTA-BN[2-14]NH2 in comparison to 68Ga-DOTA-BN[2-14]NH2 in pre-clinical investigation. Is 44Sc a potential radionuclide for PET? Appl Radiat Isot 70:2669–2676

    Article  CAS  PubMed  Google Scholar 

  16. Gourni E, Del Pozzo L, Kheirallah E et al (2015) Copper-64 labeled macrobicyclic sarcophagine coupled to a GRP receptor antagonist shows great promise for PET imaging of prostate cancer. Mol Pharm 12:2781–2790. doi:10.1021/mp500671j

    Article  CAS  PubMed  Google Scholar 

  17. Pan D, Xu YP, Yang RH et al (2014) A new (68)Ga-labeled BBN peptide with a hydrophilic linker for GRPR-targeted tumor imaging. Amino Acids 46:1481–1489

    Article  CAS  PubMed  Google Scholar 

  18. Schroeder RPJ, Müller C, Reneman S et al (2010) A standardised study to compare prostate cancer targeting efficacy of five radiolabelled bombesin analogues. Eur J Nucl Med Mol Imaging 37:1386–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heppeler A, André JP, Buschmann I et al (2008) Metal-ion-dependent biological properties of a chelator-derived somatostatin analogue for tumour targeting. Chemistry 14:3026–3034

    Article  CAS  PubMed  Google Scholar 

  20. Braad PEN, Hansen SB, Thisgaard H, Høilund-Carlsen PF (2015) PET imaging with the non-pure positron emitters: 55Co, 86Y and 124I. Phys Med Biol 60:3479–3497

    Article  CAS  PubMed  Google Scholar 

  21. Thisgaard H, Olesen ML, Dam JH (2011) Radiosynthesis of 55Co- and 58mCo-labelled DOTATOC for positron emission tomography imaging and targeted radionuclide therapy. J Label Compd Radiopharm 54:758–762

    Article  CAS  Google Scholar 

  22. Thisgaard H, Olsen BB, Dam JH et al (2014) Evaluation of cobalt-labeled octreotide analogs for molecular imaging and auger electron-based radionuclide therapy. J Nucl Med 55:1311–1316

    Article  CAS  PubMed  Google Scholar 

  23. Waser B, Eltschinger V, Linder K et al (2007) Selective in vitro targeting of GRP and NMB receptors in human tumours with the new bombesin tracer 177Lu-AMBA. Eur J Nucl Med Mol Imaging 34:95–100

    Article  CAS  PubMed  Google Scholar 

  24. Schroeder RPJ, van Weerden WM, Krenning EP et al (2011) Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts. Eur J Nucl Med Mol Imaging 38:1257–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reubi JC, Wenger S, Schmuckli-maurer J et al (2002) Bombesin receptor subtypes in human cancers: detection with the universal radioligand 125I-[d-TYR6, β-ALA11, PHE13, NLE14] bombesin (6–14). Clin Cancer Res 8:1139–1146

    CAS  PubMed  Google Scholar 

  26. Cornelio DB, Roesler R, Schwartsmann G (2007) Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol 18:1457–1466

    Article  CAS  PubMed  Google Scholar 

  27. Cagnolini A, Chen J, Ramos K et al (2010) Automated synthesis, characterization and biological evaluation of [(68)Ga]Ga-AMBA, and the synthesis and characterization of (nat)Ga-AMBA and [(67)Ga]Ga-AMBA. Appl Radiat Isot 68:2285–2292

    Article  CAS  PubMed  Google Scholar 

  28. Lantry LE, Cappelletti E, Maddalena ME et al (2006) 177Lu-AMBA: synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 47:1144–1152

    CAS  PubMed  Google Scholar 

  29. Liu I, Chang C-H, Ho C et al (2010) Multimodality imaging and preclinical evaluation of 177Lu-AMBA for human prostate tumours in a murine model. Anticancer Res 30:4039–4048

    PubMed  Google Scholar 

  30. Ho C-L, Liu I-H, Wu Y-H, et al. (2011) Molecular imaging, pharmacokinetics, and dosimetry of In-AMBA in human prostate tumor-bearing mice. J Biomed Biotechnol 1

  31. Wild D, Frischknecht M, Zhang H et al (2011) Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res 71:1009–1018

    Article  CAS  PubMed  Google Scholar 

  32. De Blois E, Schroeder RPJ, de Ridder CMA, van Weerden WM, Breeman WAP, de Jong M (2013) Improving radiopeptide pharmacokinetics by adjusting experimental conditions for bombesin receptor-mediated imaging of prostate cancer. Q J Nucl Med Mol Imaging 57:1–9

    Google Scholar 

  33. Ciatto S, Zappa M, Bonardi R, Gervasi G (2000) Prostate cancer screening: the problem of overdiagnosis and lessons to be learned from breast cancer screening. Eur J Cancer 36:1347–1350

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The bioimaging experiments reported in this paper were performed at DaMBIC, a bioimaging research core facility, at the University of Southern Denmark. DaMBIC was established by an equipment grant from the Danish Agency for Science Technology and Innovation and by internal funding from the University of Southern Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Hygum Dam.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dam, J.H., Olsen, B.B., Baun, C. et al. In Vivo Evaluation of a Bombesin Analogue Labeled with Ga-68 and Co-55/57. Mol Imaging Biol 18, 368–376 (2016). https://doi.org/10.1007/s11307-015-0911-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0911-z

Key words

Navigation