Advertisement

Molecular Imaging and Biology

, Volume 18, Issue 1, pp 109–116 | Cite as

Automatic Cardiac Self-Gating of Small-Animal PET Data

  • Joaquin L. HerraizEmail author
  • Elena Herranz
  • Jacobo Cal-González
  • Juan J. Vaquero
  • Manuel Desco
  • Lorena Cussó
  • Jose M. Udias
Research Article

Abstract

Purpose

The cardiac gating signal (CGS) in positron emission tomography (PET) studies is usually obtained from an electrocardiography (ECG) monitor. In this work, we propose a method to obtain the CGS in small-animal PET using the acquired list-mode data without using any hardware or end-user input.

Procedures

The CGS was obtained from the number of coincidences over time acquired in the lines-of-response connected with the cardiac region. This region is identified in the image as its value changes with frequencies in the range of 3 to 12 Hz. The procedure was tested in a study with 29 Wistar rats and 6 mice injected with 2-deoxy-2-[18F]fluoro-d-glucose, which underwent a 45-min single-bed list-mode PET scan of the heart syncronized with an ECG. The estimated signals and the reconstructed images using eight-gated frames were compared with the ones obtained using the ECG signal from the monitor.

Results

The differences of the PET-based CGS with respect to the ECG relative to the duration of the heartbeats were 5.6 % in rats and 11.0 % in mice. The reconstructed gated images obtained from the proposed method do not differ qualitatively with respect to the ones obtained with the ECG. The quantitative analysis of both set of images were performed measuring the volume of the left ventricle (LV) of the rats in the end-of-systole and end-of-diastole phase. The differences found in these parameters between both methods were below 12.1 % in the ESV and 9.3 % in the EDV with a 95 % confidence interval, which are comparable to the accuracy (7 %) of the method used for segmenting the LV.

Conclusion

The proposed method is able to provide a valid and accurate CGS in small-animal PET list-mode data.

Key words

List-mode PET Small animal Cardiac gating Self-gating 

Notes

Acknowledgments

This work was supported in part by Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid (Spain) through the Madrid-MIT M+Visión Consortium, Comunidad de Madrid (S2013/MIT-3024 TOPUS-CM), UCM (Grupos UCM, 910059), CPAN (Consolider-Ingenio 2010, CSPD-2007-00042), RIC-RETIC network, Spanish MINECO (RD12/0042/0057), Ministerio de Ciencia e Innovación, Spanish Government (ENTEPRASE grant, PSE-300000-2009-5 and TEC2007-64731/TCM), and European Regional funds.

Conflict of Interest

All authors declare that they have no competing interest.

References

  1. 1.
    Di Carli MF, Lipton MJ (2007) Cardiac PET and PET/CT Imaging. Springer Science and Business MediaGoogle Scholar
  2. 2.
    Wu JC, Inubushi M, Sundaresan G et al (2002) Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation 106:180–183PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Yang Y, Rending S, Siegel S et al (2005) Cardiac PET imaging in mice with simultaneous cardiac and respiratory gating. Phys Med Biol 50:2979–2989CrossRefPubMedGoogle Scholar
  4. 4.
    Croteau E, Bénard F, Cadorette J et al (2003) Quantitative gated PET for the assessment of the left ventricular function in small animals. J Nucl Med 44:1655–1661PubMedGoogle Scholar
  5. 5.
    Cussó L, Hernandez-Porras I, Montesinos P et al (2013) Phenotyping K-RasV141 knock-in mouse by cardiac-MRI: a pilot study. World Mol Imag Cong (WMIC): Program Book. pp. 79Google Scholar
  6. 6.
    Cussó L, Santa Marta C, Benito M et al (2009) Multimodal assessment of myocardial infarction in rats: comparison of late gadolinium enhanced MRI and PET. Abstract Eur Soc Mol Imag (ESMI). pp. 104Google Scholar
  7. 7.
    Böning G, Todica A, Vai A et al (2013) Erroneous cardiac ECG-gated PET list-mode trigger events can be retrospectively identified and replaced by an offline reprocessing approach: first results in rodents. Phys Med Biol 58:7937–7959CrossRefPubMedGoogle Scholar
  8. 8.
    Dineley J (2010) Fully automated gating: a new era for PET?, http://medicalphysicsweb.org/cws/article/research/44273
  9. 9.
    He J, O’Keefe GJ, Gong SJ et al (2008) A novel method for respiratory motion gated with geometric sensitivity of the scanner in 3D PET. IEEE Trans Nucl Sci 55:2557–2565CrossRefGoogle Scholar
  10. 10.
    Büther F, Dawood M, Wübbeling F et al (2009) List mode-driven cardiac and respiratory gating in PET. J Nucl Med 50:674–681CrossRefPubMedGoogle Scholar
  11. 11.
    Kesner AL, Bundschuh RA, Detorieet NC et al (2009) Respiratory gated PET derived in a fully automated manner from Raw PET data. IEEE Trans Nucl Sci 56:677–687CrossRefGoogle Scholar
  12. 12.
    Kesner AL, Kuntner C (2010) A New fast and fully automated software based algorithm for extracting respiratory signal from raw PET data and its comparison to other methods. Med Phys 37:5550–5559CrossRefPubMedGoogle Scholar
  13. 13.
    Wang Y, Seidel J, Tsui BMW et al (2006) Performance evaluation of the GE healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 47:1891–1900PubMedGoogle Scholar
  14. 14.
    Herraiz JL, España S, Vaquero JJ et al (2006) FIRST: fast iterative reconstruction software for (PET) tomography. Phys Med Biol 51:4547–4565CrossRefPubMedGoogle Scholar
  15. 15.
    Kadrmas DJ (2004) LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol 49:4731–4744PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Siddon RL (1985) Fast calculation of the exact radiological path for a three-dimensional CT array. Med Phys 12:252–255CrossRefPubMedGoogle Scholar
  17. 17.
    Mancosu P, Sghedoni R, Bettinardi V et al (2009) 4D-PET data sorting into different number of phases: a NEMA IQ phantom study. J Appl Clin Med Phys 10:220–231CrossRefPubMedGoogle Scholar
  18. 18.
    Heiberg E, Sjogren J, Ugander M et al (2010) Design and validation of segment—freely available software for cardiovascular image analysis. BMC Med Imaging 10:1 (http://segment.heiberg.se)PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310CrossRefPubMedGoogle Scholar
  20. 20.
    Herraiz JL, España S, Cal-González J et al (2011) Fully 3D GPU PET reconstruction. Nucl Inst Methods Phys Res A 648:S169–S171CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2015

Authors and Affiliations

  • Joaquin L. Herraiz
    • 1
    • 2
    Email author
  • Elena Herranz
    • 3
    • 4
  • Jacobo Cal-González
    • 5
  • Juan J. Vaquero
    • 6
    • 7
  • Manuel Desco
    • 6
    • 7
    • 8
  • Lorena Cussó
    • 6
    • 7
    • 8
  • Jose M. Udias
    • 2
  1. 1.Madrid-MIT M+Vision ConsortiumMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Grupo de Física NuclearUniversidad Complutense de MadridMadridSpain
  3. 3.A.A.Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUSA
  4. 4.Harvard Medical SchoolBostonUSA
  5. 5.Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
  6. 6.Departamento de Ingenieria Biomedica e Ingeniería AeroespacialUniversidad Carlos III de MadridLeganésSpain
  7. 7.Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain
  8. 8.Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain

Personalised recommendations