Advertisement

Molecular Imaging and Biology

, Volume 17, Issue 6, pp 777–785 | Cite as

Radiofluorination of PSMA-HBED via Al18F2+ Chelation and Biological Evaluations In Vitro

  • Noeen Malik
  • Benjamin Baur
  • Gordon Winter
  • Sven N. Reske
  • Ambros J. Beer
  • Christoph Solbach
Research Article

Abstract

Purpose

Ga-68-labeled prostate-specific membrane antigen (PSMA) ligands have been used clinically for positron emission tomography (PET) imaging of prostate cancer. However, F-18-labeled compounds offer several advantages, including the potential for delayed imaging, high starting activities enabling multidose preparation, and improved spatial resolution in PET. For F-18 labeling of peptides conjugated with a suitable chelator, a fast and feasible method is the use of [Al18F]2+. In the present study, the radiofluorinations of a well-known PSMA ligand Glu-NH-CO-NH-Lys(Ahx)-HBED-CC (PSMA-HBED) via [Al18F]2+ were performed with respect to various reaction parameters, along with the biological evaluations in a cell experiment.

Procedures

[Al18F]PSMA-HBED was prepared by adding Na[18F]F into a vial containing 0.026 μmol peptide (in 0.05 M NaOAc buffer) and 0.03 μmol AlCl3⋅6H2O (in 0.05 M NaOAc buffer). Then, it was stirred at different temperatures from 1 to 30 min. Afterwards, purification was carried out by solid phase extraction. Biological evaluations were performed in PSMA-positive cell lines LNCaP C4-2, along with a negative control using PC-3 cell lines.

Results

The best labeling results (81 ± 0.5 %, n = 4) were observed with 0.026 μmol peptide (30 °C, 5 min). For preclinical experiments, the production of [Al18F]PSMA-HBED at 35 °C including purification by solid phase extraction (SPE) succeeded within 45 min, resulting in a radiochemical yield of 49 ± 1.2 % (decay-corrected, n = 6, radiochemical purity ≥98 %) at EOS. The labeled peptide revealed serum stability for 4 h as well as a promising binding coefficient (K D) value of 10.3 ± 2.2 nM in cell experiments with PSMA-positive LNCaP C4-2 cells.

Conclusion

An efficient and one-pot method for the radiosynthesis of [Al18F]PSMA-HBED was developed (0.26 μmol of precursor at 35 °C). In cell culture studies, the K D suggests [Al18F]PSMA-HBED as a potential PSMA ligand for future investigations in vivo and clinical applications afterwards.

Key words

F-18 Al18F-labeling PSMA PSMA-HBED Prostate cancer 

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11307_2015_844_MOESM1_ESM.pdf (327 kb)
ESM 1 (PDF 327 kb)

References

  1. 1.
    Ghosh A, Heston WD (2004) Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 91:528–539CrossRefPubMedGoogle Scholar
  2. 2.
    Elsasser-B U, Reischl G, Wiehr S et al (2009) PET imaging of prostate cancer xenografts prostate-specific membrane antigen. J Nucl Med 50:606–611CrossRefGoogle Scholar
  3. 3.
    Reske SN, Winter G, Baur B et al (2013) Comment on Afshar-Oromieh et al.: PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 40:969–970PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Goodman OB Jr, Barwe SP, Ritter B et al (2007) Interaction of prostate specific membrane antigen with a highly specific antibody against the clathrin and the adaptor protein complex-2. Int J Oncol 31:1199–1203PubMedGoogle Scholar
  5. 5.
    Ikeda M, Ochi R, Wada A et al (2010) Supramolecular hydrogel capsule showing prostate specific antigen-responsive function for sensing and targeting prostate cancer cells. Chem Sci 1:491–498CrossRefGoogle Scholar
  6. 6.
    Blank BR, Alayoglu P, Engen W et al (2011) N-substituted glutamyl sulfonamides as inhibitors of glutamate carboxypeptidase II (GCP2). Chem Biol Drug Des 77:241–247PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Olson WC, Heston WD, Rajasekaran AK (2007) Clinical trials of cancer therapies targeting prostate-specific membrane antigen. Rev Recent Clin Trials 2:182–190CrossRefPubMedGoogle Scholar
  8. 8.
    Kularatne AS, Zhou Z, Yang J et al (2009) Design, synthesis, and preclinical evaluation of prostate-specific membrane antigen targeted 99mTc-radioimaging agents. Mol Pharm 6:790–800CrossRefPubMedGoogle Scholar
  9. 9.
    Kularatne SA, Wang K, Santhapuram H-KR, Low PS (2009) Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand. Mol Pharm 6:780–789CrossRefPubMedGoogle Scholar
  10. 10.
    Becaud J, Mu L, Karramkam M et al (2009) Direct one-step 18F-labeling of peptides via nucleophilic aromatic substitution. Bioconjug Chem 20:2254–2261CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang AX, Murelli RP, Barinka C et al (2010) A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J Am Chem Soc 132:12711–12716PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Laverman P, McBride WJ, Sharkey RM et al (2010) A novel facile method of labelling octreotide with 18F-fluorine. J Nucl Med 51:454–461PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Kularatne SA, Venkatesh C, Santhapuram H-KR et al (2010) Synthesis and biological analysis of prostate-specific membrane antigen-targeted anticancer prodrugs. J Med Chem 53:7767–7777CrossRefPubMedGoogle Scholar
  14. 14.
    Chen Y, Pullambhatla M, Foss CA et al (2011) 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res 17:7645–7653PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Al-Momani E, Malik N, Machulla H-J et al (2013) Radiosynthesis of [18F]FEt-Tyr-urea-Glu ([18F]FEtTUG) as a new PSMA ligand. J Radioanal Nucl Chem 295:2289–2294CrossRefGoogle Scholar
  16. 16.
    Olberg DE, Arukwe JM, Grace D et al (2010) One step radiosynthesis of 6-[18F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([18F]F-Py-TFP): a new prosthetic group for efficient labelling of biomolecules with fluorine-18. J Med Chem 53:1732–1740CrossRefPubMedGoogle Scholar
  17. 17.
    Malik N, Machulla H-J, Solbach C et al (2011) Radiosynthesis of a new PSMA targeting ligand ([18F]FPy-DUPA-Pep). Appl Radiat Isot 69:1014–1018CrossRefPubMedGoogle Scholar
  18. 18.
    McBride WJ, D’Souza CA, Sharkey RM et al (2010) Improved 18F-labeling of peptides with a fluoride-aluminum-chelate complex. Bioconjug Chem 21:1331–1340PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    D’Souza CA, McBride WJ, Sharkey RM et al (2011) High-yielding aqueous 18F-labeling of peptides via Al18F chelation. Bioconjug Chem 22:1793–1803PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    McBride WJ, D’Souza CA, Sharkey RM, Goldenberg DM (2012) The radiolabeling of proteins by the [18F]AlF method. Appl Radiat Isot 70:200–204PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    McBride WJ, D’Souza CA, Karacay H et al (2013) New lyophilized kit for rapid radiofluorination of peptides. Bioconjug Chem 23:538–547CrossRefGoogle Scholar
  22. 22.
    McBride WJ, Sharkey RM, Goldenberg DM (2013) Radiofluorination using aluminum-fluoride (Al18F). EJNMMI Res 3:36PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Malik N, Zlatopolskiy B, Reske SN et al (2012) One pot radiofluorination of a new potential PSMA ligand [Al18F]NOTA-DUPA-Pep. J Label Compd Radiopharm 55:320–325CrossRefGoogle Scholar
  24. 24.
    Wan W, Guo N, Pan D et al (2013) First experience of 18F-Alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med 54:691–698PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Eder M, Wängler B, Knackmuss S et al (2008) Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for 68Ga-labeled small recombinant antibodies. Eur J Nucl Med Mol Imaging 35:1878–1886CrossRefPubMedGoogle Scholar
  26. 26.
    Afshar-Oromieh A, Malcher A, Eder M et al (2013) PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 40:486–495CrossRefPubMedGoogle Scholar
  27. 27.
    Rajasekaran AK, Anilkumar G, Christiansen JJ (2005) Is prostate-specific membrane antigen a multifunctional protein? Am J Physiol Cell Physiol 288:975–981CrossRefGoogle Scholar
  28. 28.
    Martin RB (1988) Ternary hydroxide complexes in neutral solutions of Al3+ and F. Biochem Biophys Res Commun 155:1194–1200CrossRefPubMedGoogle Scholar
  29. 29.
    Delgado R, Sun Y, Motekaitis RJ, Martel AE (1993) Stabilities of divalent and trivalent metal ion complexes of macrocyclic triazatriacetic acids. Inorg Chem 32:3320–3326CrossRefGoogle Scholar
  30. 30.
    Kodama K, Kimura E (1995) Complexation reactions of aluminum ions with polyamino polycarboxylic macrocycles in an aqueous solution. Bull Chem Soc Jpn 68:852–857CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2015

Authors and Affiliations

  • Noeen Malik
    • 1
  • Benjamin Baur
    • 1
  • Gordon Winter
    • 1
  • Sven N. Reske
    • 1
  • Ambros J. Beer
    • 1
  • Christoph Solbach
    • 1
  1. 1.Clinic for Nuclear MedicineUniversity Hospital UlmUlmGermany

Personalised recommendations