Advertisement

Molecular Imaging and Biology

, Volume 17, Issue 5, pp 609–614 | Cite as

Imaging Chronic Tuberculous Lesions Using Sodium [18F]Fluoride Positron Emission Tomography in Mice

  • Alvaro A. Ordonez
  • Vincent P. DeMarco
  • Mariah H. Klunk
  • Supriya Pokkali
  • Sanjay K. Jain
Brief Article

Abstract

Purpose

Calcification is a hallmark of chronic tuberculosis (TB) in humans, often noted years to decades (after the initial infection) on chest radiography, but not visualized well with traditional positron emission tomography (PET). We hypothesized that sodium [18F]fluoride (Na[18F]F) PET could be used to detect microcalcifications in a chronically Mycobacterium tuberculosis-infected murine model.

Procedures

C3HeB/FeJ mice, which develop necrotic and hypoxic TB lesions, were aerosol-infected with M. tuberculosis and imaged with Na[18F]F PET.

Results

Pulmonary TB lesions from chronically infected mice demonstrated significantly higher Na[18F]F uptake compared with acutely infected or uninfected animals (P < 0.01), while no differences were noted in the blood or bone compartments (P > 0.08). Ex vivo biodistribution studies confirmed the imaging findings, and tissue histology demonstrated microcalcifications in TB lesions from chronically infected mice, which has not been demonstrated previously in a murine model.

Conclusion

Na[18F]F PET can be used for the detection of chronic TB lesions and could prove to be a useful noninvasive biomarker for TB studies.

Key words

Tuberculosis Chronic Na[18F]F Microcalcification PET 

Notes

Acknowledgments

This study was funded by the National Institutes of Health (NIH) Director’s Transformative Research Award R01-EB020539 (S.K.J.) and the NIH Director’s New Innovator Award DP2-OD006492 (S.K.J.) as well as R01-HL116316 (S.K.J.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of Interest

None of the authors report any financial or potential conflicts of interest.

Supplementary material

11307_2015_836_MOESM1_ESM.pdf (67 kb)
ESM 1 (PDF 66 kb)
11307_2015_836_MOESM2_ESM.mov (639 kb)
ESM 2 (MOV 639 kb)
11307_2015_836_MOESM3_ESM.mov (1.1 mb)
ESM 3 (MOV 1118 kb)
11307_2015_836_MOESM4_ESM.mov (626 kb)
ESM 4 (MOV 625 kb)

References

  1. 1.
    WHO Global tuberculosis report 2014. http://www.who.int/tb/publications/global_report/gtbr14_executive_summary.pdf?ua=1. Accessed 21 November
  2. 2.
    Robbins SL, Kumar V (2010) Robbins and Cotran pathologic basis of disease, 8th edn. Saunders/Elsevier, PhiladelphiaGoogle Scholar
  3. 3.
    Johnson DH, Via LE, Kim P et al (2014) Nuclear imaging: a powerful novel approach for tuberculosis. Nucl Med Biol 41:777–784CrossRefPubMedGoogle Scholar
  4. 4.
    Sathekge M, Maes A, Kgomo M et al (2011) Use of 18F-FDG PET to predict response to first-line tuberculostatics in HIV-associated tuberculosis. J Nucl Med 52:880–885CrossRefPubMedGoogle Scholar
  5. 5.
    Bagci U, Foster B, Miller-Jaster K et al (2013) A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging. EJNMMI Res 3:55PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Murawski AM, Gurbani S, Harper JS et al (2014) Imaging the evolution of reactivation pulmonary tuberculosis in mice using 18F-FDG PET. J Nucl Med 55:1726–1729CrossRefPubMedGoogle Scholar
  7. 7.
    Leung AN (1999) Pulmonary tuberculosis: the essentials. Radiology 210:307–322CrossRefPubMedGoogle Scholar
  8. 8.
    Harper J, Skerry C, Davis SL et al (2011) Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis. doi: 10.1093/infdis/jir786 PubMedCentralPubMedGoogle Scholar
  9. 9.
    Pan H, Yan BS, Rojas M et al (2005) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434:767–772PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Davis SL, Nuermberger EL, Um PK et al (2009) Noninvasive pulmonary [18F]-2-fluoro-deoxy-D-glucose positron emission tomography correlates with bactericidal activity of tuberculosis drug treatment. Antimicrob Agents Chemother 53:4879–4884PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Ordonez AA, Pokkali S, DeMarco VP et al (2014) Radioiodo-DPA-713 imaging correlates with bactericidal activity of tuberculosis treatments in mice. Antimicrob Agents Chemother 59:642–649PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Davis SL, Be NA, Lamichhane G et al (2009) Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals. PLoS One. doi: 10.1371/journal.pone.0006297 Google Scholar
  13. 13.
    Weinstein EA, Liu L, Ordonez AA et al (2012) Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in Mycobacterium tuberculosis-infected mice. Antimicrob Agents Chemother 56:6284–6290PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Weinstein EA, Ordonez AA, DeMarco VP et al (2014) Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci Transl Med 259ra146Google Scholar
  15. 15.
    Foss CA, Harper JS, Wang H et al (2013) Noninvasive molecular imaging of tuberculosis-associated inflammation with radioiodinated DPA-713. J Infect Dis 208:2067–2074PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Bonewald LF, Harris SE, Rosser J et al (2003) von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int 72:537–547CrossRefPubMedGoogle Scholar
  17. 17.
    Lievremont M, Potus J, Guillou B (1982) Use of alizarin red S for histochemical staining of Ca2+ in the mouse; some parameters of the chemical reaction in vitro. Acta Anat 114:268–280CrossRefPubMedGoogle Scholar
  18. 18.
    Blau M, Nagler W, Bender MA (1962) Fluorine-18: a new isotope for bone scanning. J Nucl Med 3:332–334PubMedGoogle Scholar
  19. 19.
    Blau M, Ganatra R, Bender MA (1972) 18F-fluoride for bone imaging. Semin Nucl Med 2:31–37CrossRefPubMedGoogle Scholar
  20. 20.
    Shen CT, Qiu ZL, Han TT, Luo QY (2014) Performance of 18F-fluoride PET or PET/CT for the detection of bone metastases: a meta-analysis. Clin Nucl Med 40:103–110CrossRefGoogle Scholar
  21. 21.
    Joshi NV, Vesey AT, Williams MC et al (2014) 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383:705–713CrossRefPubMedGoogle Scholar
  22. 22.
    Wilson GH 3rd, Gore JC, Yankeelov TE et al (2014) An approach to breast cancer diagnosis via PET imaging of microcalcifications using 18F-NaF. J Nucl Med 55:1138–1143PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Jayachandran R, Sundaramurthy V, Combaluzier B et al (2007) Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130:37–50CrossRefPubMedGoogle Scholar
  24. 24.
    Canetti G (1955) The tubercle bacillus in the pulmonary lesion of man. The histobacteriogenesis of tuberculosis lesions: experimental studies. Springer Publishing Company, Inc, New York, pp 87–90Google Scholar
  25. 25.
    Dweck MR, Chow MW, Joshi NV et al (2012) Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol 59:1539–1548CrossRefPubMedGoogle Scholar
  26. 26.
    Gomori G (1943) Calcification and phosphatase. Am J Pathol 19:197PubMedCentralPubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2015

Authors and Affiliations

  • Alvaro A. Ordonez
    • 1
    • 2
    • 3
  • Vincent P. DeMarco
    • 1
    • 2
    • 3
  • Mariah H. Klunk
    • 1
    • 2
    • 3
  • Supriya Pokkali
    • 1
    • 2
    • 3
  • Sanjay K. Jain
    • 1
    • 2
    • 3
  1. 1.Center for Infection and Inflammation Imaging ResearchJohns Hopkins UniversityBaltimoreUSA
  2. 2.Center for Tuberculosis ResearchJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of PediatricsJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations