Molecular Imaging and Biology

, Volume 17, Issue 3, pp 424–433 | Cite as

BAY 1075553 PET-CT for Staging and Restaging Prostate Cancer Patients: Comparison with [18F] Fluorocholine PET-CT (Phase I Study)

  • Mohsen Beheshti
  • Thomas Kunit
  • Silke Haim
  • Rasoul Zakavi
  • Christian Schiller
  • Andrew Stephens
  • Ludger Dinkelborg
  • Werner Langsteger
  • Wolfgang Loidl
Research Article



(2RS,4S)-2-[18F]Fluoro-4-phosphonomethyl-pentanedioic acid (BAY1075553) shows increased uptake in prostate cancer cells. We compared the diagnostic potential of positron emission tomography (PET)-X-ray computed tomography (CT) imaging using BAY1075553 versus [18F]f luorocholine (FCH) PET-CT.


Twelve prostate cancer patients (nine staging, three re-staging) were included. The mean prostate-specific antigen in the primary staging and re-staging groups was 21.5 ± 12 and 73.6 ± 33 ng/ml, respectively. Gleason score ranged from 5–9. In nine patients imaged for pre-operative staging, the median Gleason score was 8 (range, 7–9). PET acquisition started with dynamic PET images in the pelvic region followed by static whole-body acquisition. The patients were monitored for 5–8 days afterward for adverse events.


There were no relevant changes in laboratory values or physical examination. Urinary bladder wall received the largest dose equivalent 0.12 mSv/MBq. The whole-body mean effective dose was 0.015 mSv/MBq. There was a significant correlation between detected prostatic lesions by the two imaging modalities (Kappa = 0.356, P < 0.001) and no significant difference in sensitivity (P = 0.16) and specificity (P = 0.41). The sensitivity and specificity of PET imaging using BAY1075553 for lymph node (LN) staging was 42.9 % and 100 %, while it was 81.2 % and 50 % using FCH. The two modalities were closely correlated regarding detection of LNs and bone metastases, although BAY1075553 failed to detect a bone marrow metastasis. Degenerative bone lesions often displayed intense uptake of BAY1075553.


BAY1075553 PET-CT produced no adverse effects, was well tolerated, and detected primary and metastatic prostate cancer. FCH PET-CT results were superior, however, with respect to detecting LN and bone marrow metastases.

Key words

BAY1075553 FCH PET-CT Prostate cancer PSMA 



Piramal Imaging GmbH GmbH, Berlin, Germany, gave financial supported to this study.

Conflict of Interest

A. Stephens and L. Dinkelborg are employees of Piramal Imaging GmbH, Berlin, Germany. Other authors have no conflict of interest.


  1. 1.
    Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249CrossRefPubMedGoogle Scholar
  2. 2.
    Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J et al (2012) Cancer incidence and mortality patterns in Europe: estimates for 40 countries. Eur J Cancer 49:1374–1403CrossRefGoogle Scholar
  3. 3.
    Jadvar H (2009) Molecular imaging of prostate cancer with 18F-fluorodeoxyglucose PET. Nat Rev Urol 6:317–323CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Beheshti M, Haim S, Zakavi R et al (2013) Impact of 18F -choline PET/CT in prostate cancer patients with biochemical recurrence: influence of androgen deprivation therapy and correlation with PSA kinetics. J Nucl Med 54:833–840CrossRefPubMedGoogle Scholar
  5. 5.
    Beheshti M, Imamovic L, Broinger G et al (2010) 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 254:925–933CrossRefPubMedGoogle Scholar
  6. 6.
    Dehdashti F, Picus J, Michalski JM et al (2005) Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 32:344–350CrossRefPubMedGoogle Scholar
  7. 7.
    Kato T, Tsukamoto E, Kuge Y et al (2002) Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging 29:1492–1495CrossRefPubMedGoogle Scholar
  8. 8.
    Schuster DM, Savir-Baruch B, Nieh PT et al (2011) Detection of recurrent prostate carcinoma with anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT and 111In-capromab pendetide SPECT/CT. Radiology 259:852–861CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Beheshti M, Langsteger W, Fogelman I (2009) Prostate cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39:396–407CrossRefPubMedGoogle Scholar
  10. 10.
    Wright GL Jr, Haley C, Beckett ML, Schellhammer PF (1995) Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol 1:18–28CrossRefPubMedGoogle Scholar
  11. 11.
    Bostwick DG, Pacelli A, Blute M et al (1998) Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 82:2256–2261CrossRefPubMedGoogle Scholar
  12. 12.
    Minner S, Wittmer C, Graefen M et al (2011) High level PSMA expression is associated with early PSA recurrence in surgically treated prostate cancer. Prostate 71:281–288CrossRefPubMedGoogle Scholar
  13. 13.
    Mhawech-Fauceglia P, Zhang S, Terracciano L et al (2007) Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using multiple tumour tissue microarray technique. Histopathology 50:472–483CrossRefPubMedGoogle Scholar
  14. 14.
    Silver DA, Pellicer I, Fair WR et al (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85PubMedGoogle Scholar
  15. 15.
    Chang SS, Reuter VE, Heston WD et al (1999) Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 59:3192–3198PubMedGoogle Scholar
  16. 16.
    Sacha P, Zamecnik J, Barinka C et al (2007) Expression of glutamate carboxypeptidase II in human brain. Neuroscience 144:1361–1372CrossRefPubMedGoogle Scholar
  17. 17.
    Barrett JA, Coleman RE, Goldsmith SJ et al (2013) First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med 54:380–387CrossRefPubMedGoogle Scholar
  18. 18.
    Afshar-Oromieh A, Malcher A, Eder M et al (2013) PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 40:486–495CrossRefPubMedGoogle Scholar
  19. 19.
    Troyer JK, Beckett ML, Wright GL Jr (1995) Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int J Cancer 62:552–558CrossRefPubMedGoogle Scholar
  20. 20.
    Galsky MD, Eisenberger M, Moore-Cooper S et al (2008) Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J Clin Oncol 26:2147–2154CrossRefPubMedGoogle Scholar
  21. 21.
    Milowsky MI, Nanus DM, Kostakoglu L et al (2004) Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol 22:2522–2531CrossRefPubMedGoogle Scholar
  22. 22.
    Osborne JR, Green DA, Spratt DE et al (2014) A prospective pilot study of Zr-J591/prostate specific membrane antigen positron emission tomography in men with localized prostate cancer undergoing radical prostatectomy. J Urol 191(5):1439–1445CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Elsasser-Beile U, Reischl G, Wiehr S et al (2009) PET imaging of prostate cancer xenografts with a highly specific antibody against the prostate-specific membrane antigen. J Nucl Med 50:606–611CrossRefPubMedGoogle Scholar
  24. 24.
    Lesche R, Kettschau G, Gromov AV et al (2014) Preclinical evaluation of BAY 1075553, a novel (18)F-labelled inhibitor of prostate-specific membrane antigen for PET imaging of prostate cancer. Eur J Nucl Med Mol Imaging 41:89–101CrossRefPubMedGoogle Scholar
  25. 25.
    DeGrado TR, Reiman RE, Price DT et al (2002) Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 43:92–96PubMedGoogle Scholar
  26. 26.
    Cimitan M, Bortolus R, Morassut S et al (2006) [(18)F] Fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33:1387–1398CrossRefPubMedGoogle Scholar
  27. 27.
    Schmid DT, John H, Zweifel R et al (2005) Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 235:623–628CrossRefPubMedGoogle Scholar
  28. 28.
    Li Y, Cozzi PJ, Russell PJ (2010) Promising tumor-associated antigens for future prostate cancer therapy. Med Res Rev 30:67–101PubMedGoogle Scholar
  29. 29.
    Kallioniemi OP, Wagner U, Kononen J, Sauter G (2001) Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet 10:657–662CrossRefPubMedGoogle Scholar
  30. 30.
    Liu H, Rajasekaran AK, Moy P et al (1998) Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res 58:4055–4060PubMedGoogle Scholar
  31. 31.
    Ross JS, Sheehan CE, Fisher HA et al (2003) Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res 9:6357–6362PubMedGoogle Scholar
  32. 32.
    Perner S, Hofer MD, Kim R et al (2007) Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol 38:696–701CrossRefPubMedGoogle Scholar
  33. 33.
    Mease RC, Foss CA, Pomper MG (2013) PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr Top Med Chem 13:951–962CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Nedrow-Byers JR, Jabbes M, Jewett C et al (2012) A phosphoramidate-based prostate-specific membrane antigen-targeted SPECT agent. Prostate 72:904–912CrossRefPubMedGoogle Scholar
  35. 35.
    Schafer M, Bauder-Wust U, Leotta K et al (2012) A dimerized urea-based inhibitor of the prostate-specific membrane antigen for 68Ga-PET imaging of prostate cancer. EJNMMI Res 2:23CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Banerjee SR, Pullambhatla M, Byun Y et al (2008) 68Ga-labeled inhibitors of prostate-specific membrane antigen (PSMA) for imaging prostate cancer. J Med Chem 53:5333–5341CrossRefGoogle Scholar
  37. 37.
    Chen Y, Foss CA, Byun Y et al (2008) Radiohalogenated prostate-specific membrane antigen (PSMA)-based ureas as imaging agents for prostate cancer. J Med Chem 51:7933–7943CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Maresca KP, Hillier SM, Femia FJ et al (2009) A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem 52:347–357CrossRefPubMedGoogle Scholar
  39. 39.
    Lapi SE, Wahnishe H, Pham D et al (2009) Assessment of an 18F-labeled phosphoramidate peptidomimetic as a new prostate-specific membrane antigen-targeted imaging agent for prostate cancer. J Nucl Med 50:2042–2048CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Mease RC, Dusich CL, Foss CA et al (2008) N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-l-cysteine, [18F] DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res 14:3036–3043CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Hillier SM, Kern AM, Maresca KP et al (2011) 123I-MIP-1072, a small-molecule inhibitor of prostate-specific membrane antigen, is effective at monitoring tumor response to taxane therapy. J Nucl Med 52:1087–1093CrossRefPubMedGoogle Scholar
  42. 42.
    Conti M (2009) State of the art and challenges of time-of-flight PET. Phys Med 25:1–11CrossRefPubMedGoogle Scholar
  43. 43.
    Moses WW (2007) Recent advances and future advances in time-of-flight PET. Nucl Inst Methods Phys Res A 580:919–924CrossRefGoogle Scholar
  44. 44.
    Ananias HJ, van den Heuvel MC, Helfrich W, de Jong IJ (2009) Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer. Prostate 69:1101–1108CrossRefPubMedGoogle Scholar
  45. 45.
    Foss CA, Mease RC, Fan H et al (2005) Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res 11:4022–4028CrossRefPubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2014

Authors and Affiliations

  • Mohsen Beheshti
    • 1
  • Thomas Kunit
    • 2
    • 5
  • Silke Haim
    • 1
  • Rasoul Zakavi
    • 3
  • Christian Schiller
    • 1
  • Andrew Stephens
    • 4
  • Ludger Dinkelborg
    • 4
  • Werner Langsteger
    • 1
  • Wolfgang Loidl
    • 2
  1. 1.Department of Nuclear Medicine and Endocrinology, PET-CT Center LinzSt. Vincent’s HospitalLinzAustria
  2. 2.Department of Urology, Prostate Center LinzSt. Vincent’s HospitalLinzAustria
  3. 3.Nuclear Medicine Research CenterMashhad University of Medical SciencesMashhadIran
  4. 4.Piramal Imaging GmbHBerlinGermany
  5. 5.Department of UrologyParacelsus Medical UniversitySalzburgAustria

Personalised recommendations