Advertisement

Molecular Imaging and Biology

, Volume 16, Issue 6, pp 813–820 | Cite as

Preclinical Imaging Evaluation of Novel TSPO-PET Ligand 2-(5,7-Diethyl-2-(4-(2-[18F]fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide ([18F]VUIIS1008) in Glioma

  • Dewei Tang
  • Michael L. Nickels
  • M. Noor Tantawy
  • Jason R. Buck
  • H. Charles ManningEmail author
Research Article

Abstract

Purpose

Translocator protein (TSPO) concentrations are elevated in glioma, suggesting a role for TSPO positron emission tomography (PET) imaging in this setting. In preclinical PET studies, we evaluated a novel, high-affinity TSPO PET ligand, [18F]VUIIS1008, in healthy mice and glioma-bearing rats.

Procedures

Dynamic PET data were acquired simultaneously with [18F]VUIIS1008 injection, with binding reversibility and specificity evaluated in vivo by non-radioactive ligand displacement or blocking. Compartmental analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry.

Results

[18F]VUIIS1008 exhibited rapid uptake in TSPO-rich organs. PET ligand uptake was displaceable with non-radioactive VUIIS1008 or PBR06 in mice. Tumor accumulation of [18F]VUIIS1008 was blocked by pretreatment with VUIIS1008 in rats. [18F]VUIIS1008 exhibited improved tumor-to-background ratio and higher binding potential in tumors compared to a structurally similar pyrazolopyrimidine TSPO ligand, [18F]DPA-714.

Conclusions

The PET ligand [18F]VUIIS1008 exhibits promising characteristics as a tracer for imaging glioma. Further translational studies appear warranted.

Key words

PET DPA-714 VUIIS1008 TSPO Glioma Cancer imaging 

Notes

Acknowledgments

The authors thank George H. Wilson and Daniel Colvin for the assistance with microPET and MR imaging studies, respectively, Allie Fu for preclinical model support, and Matthew R. Hight and Michael L. Schulte for editing the manuscript and helpful discussions. The authors acknowledge funding from the National Institutes of Health (K25 CA127349, P50 CA128323, S10 RR17858, U24 CA126588, 1R01 CA163806) and the Kleberg Foundation.

Conflict of Interest

The authors do not have any conflicts of interest.

Supplementary material

11307_2014_743_MOESM1_ESM.pdf (92 kb)
ESM 1 (PDF 91 kb)

References

  1. 1.
    Jackson RJ, Fuller GN, Abi-Said D et al (2001) Limitations of stereotactic biopsy in the initial management of gliomas. Neuro-Oncology 3:193–200PubMedPubMedCentralGoogle Scholar
  2. 2.
    Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998PubMedGoogle Scholar
  3. 3.
    Dhermain FG, Hau P, Lanfermann H et al (2010) Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 9:906–920PubMedCrossRefGoogle Scholar
  4. 4.
    Dimitrakopoulou-Strauss A, Seiz M, Tuettenberg J et al (2011) Pharmacokinetic studies of (6)(8)Ga-labeled Bombesin ((6)(8)Ga-BZH(3)) and F-18 FDG PET in patients with recurrent gliomas and comparison to grading: preliminary results. Clin Nucl Med 36:101–108PubMedCrossRefGoogle Scholar
  5. 5.
    Papadopoulos V, Baraldi M, Guilarte TR et al (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27:402–409PubMedCrossRefGoogle Scholar
  6. 6.
    Awde AR, Boisgard R, Theze B et al (2013) The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model. J Nucl Med Off Publ Soc Nucl Med 54:2125–2131Google Scholar
  7. 7.
    Edison P, Archer HA, Gerhard A et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32:412–419PubMedCrossRefGoogle Scholar
  8. 8.
    Yasuno F, Ota M, Kosaka J et al (2008) Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry 64:835–841PubMedCrossRefGoogle Scholar
  9. 9.
    Pavese N, Gerhard A, Tai YF et al (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643PubMedCrossRefGoogle Scholar
  10. 10.
    Ouchi Y, Yoshikawa E, Sekine Y et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175PubMedCrossRefGoogle Scholar
  11. 11.
    Han Z, Slack RS, Li W, Papadopoulos V (2003) Expression of peripheral benzodiazepine receptor (PBR) in human tumors: relationship to breast, colorectal, and prostate tumor progression. J Recept Signal Transduct Res 23:225–238PubMedCrossRefGoogle Scholar
  12. 12.
    Hardwick M, Fertikh D, Culty M et al (1999) Peripheral-type benzodiazepine receptor (PBR) in human breast cancer: correlation of breast cancer cell aggressive phenotype with PBR expression, nuclear localization, and PBR-mediated cell proliferation and nuclear transport of cholesterol. Cancer Res 59:831–842PubMedGoogle Scholar
  13. 13.
    Hardwick M, Rone J, Han Z et al (2001) Peripheral-type benzodiazepine receptor levels correlate with the ability of human breast cancer MDA-MB-231 cell line to grow in SCID mice. Int J Cancer 94:322–327PubMedCrossRefGoogle Scholar
  14. 14.
    Deane NG, Manning HC, Foutch AC et al (2007) Targeted imaging of colonic tumors in smad3−/− mice discriminates cancer and inflammation. Mol Cancer Res 5:341–349PubMedCrossRefGoogle Scholar
  15. 15.
    Wyatt SK, Manning HC, Bai M et al (2010) Molecular imaging of the translocator protein (TSPO) in a pre-clinical model of breast cancer. Mol Imaging Biol 12:349–358PubMedCrossRefGoogle Scholar
  16. 16.
    Tang D, Hight MR, McKinley ET et al (2012) Quantitative preclinical imaging of TSPO expression in glioma using N, N-diethyl-2-(2-(4-(2–18F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimi din-3-yl)acetamide. J Nucl Med Off Publ Soc Nucl Med 53:287–294Google Scholar
  17. 17.
    Buck JR, McKinley ET, Hight MR et al (2011) Quantitative, preclinical PET of translocator protein expression in glioma using 18F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline. J Nucl Med Off Publ Soc Nucl Med 52:107–114Google Scholar
  18. 18.
    Tang D, McKinley ET, Hight MR et al (2013) Synthesis and structure-activity relationships of 5,6,7-substituted pyrazolopyrimidines: discovery of a novel TSPO PET ligand for cancer imaging. J Med Chem 56:3429–3433PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Boutin H, Prenant C, Maroy R et al (2013) [18F]DPA-714: direct comparison with [11C]PK11195 in a model of cerebral ischemia in rats. PLoS One 8:e56441PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Winkeler A, Boisgard R, Awde AR et al (2012) The translocator protein ligand [(1)(8)F]DPA-714 images glioma and activated microglia in vivo. Eur J Nucl Med Mol Imaging 39:811–823PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Buck JR, Saleh S, Uddin MI, Manning HC (2012) Rapid, microwave-assisted organic synthesis of selective (V600E)BRAF inhibitors for preclinical cancer research. Tetrahedron Lett 53:4161–4165PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 27:1533–1539CrossRefGoogle Scholar
  23. 23.
    Fujimura Y, Kimura Y, Simeon FG et al (2010) Biodistribution and radiation dosimetry in humans of a new PET ligand, (18)F-PBR06, to image translocator protein (18 kDa). J Nucl Med Off Publ Soc Nucl Med 51:145–149Google Scholar
  24. 24.
    Arlicot N, Vercouillie J, Ribeiro MJ et al (2012) Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol 39:570–578PubMedCrossRefGoogle Scholar
  25. 25.
    Manning HC, Goebel T, Thompson RC et al (2004) Targeted molecular imaging agents for cellular-scale bimodal imaging. Bioconjug Chem 15:1488–1495PubMedCrossRefGoogle Scholar
  26. 26.
    Carmel I, Fares FA, Leschiner S et al (1999) Peripheral-type benzodiazepine receptors in the regulation of proliferation of MCF-7 human breast carcinoma cell line. Biochem Pharmacol 58:273–278PubMedCrossRefGoogle Scholar
  27. 27.
    Fafalios A, Akhavan A, Parwani AV et al (2009) Translocator protein blockade reduces prostate tumor growth. Clin Cancer Res 15:6177–6184PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Nagler R, Ben-Izhak O, Savulescu D et al (2010) Oral cancer, cigarette smoke and mitochondrial 18 kDa translocator protein (TSPO)—in vitro, in vivo, salivary analysis. Biochim Biophys Acta 1802:454–461PubMedCrossRefGoogle Scholar
  29. 29.
    Maaser K, Hopfner M, Jansen A et al (2001) Specific ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in human colorectal cancer cells. Br J Cancer 85:1771–1780PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Maaser K, Grabowski P, Sutter AP et al (2002) Overexpression of the peripheral benzodiazepine receptor is a relevant prognostic factor in stage III colorectal cancer. Clin Cancer Res 8:3205–3209PubMedGoogle Scholar
  31. 31.
    Venturini I, Zeneroli ML, Corsi L et al (1998) Up-regulation of peripheral benzodiazepine receptor system in hepatocellular carcinoma. Life Sci 63:1269–1280PubMedCrossRefGoogle Scholar
  32. 32.
    Venturini I, Zeneroli ML, Corsi L et al (1998) Diazepam binding inhibitor and total cholesterol plasma levels in cirrhosis and hepatocellular carcinoma. Regul Pept 74:31–34PubMedCrossRefGoogle Scholar
  33. 33.
    Black KL, Ikezaki K, Toga AW (1989) Imaging of brain tumors using peripheral benzodiazepine receptor ligands. J Neurosurg 71:113–118PubMedCrossRefGoogle Scholar
  34. 34.
    Starosta-Rubinstein S, Ciliax BJ, Penney JB et al (1987) Imaging of a glioma using peripheral benzodiazepine receptor ligands. Proc Natl Acad Sci U S A 84:891–895PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Galiegue S, Casellas P, Kramar A et al (2004) Immunohistochemical assessment of the peripheral benzodiazepine receptor in breast cancer and its relationship with survival. Clin Cancer Res 10:2058–2064PubMedCrossRefGoogle Scholar
  36. 36.
    Miettinen H, Kononen J, Haapasalo H et al (1995) Expression of peripheral-type benzodiazepine receptor and diazepam binding inhibitor in human astrocytomas: relationship to cell proliferation. Cancer Res 55:2691–2695PubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2014

Authors and Affiliations

  • Dewei Tang
    • 1
    • 2
  • Michael L. Nickels
    • 1
    • 2
  • M. Noor Tantawy
    • 1
    • 2
  • Jason R. Buck
    • 1
    • 2
  • H. Charles Manning
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    Email author
  1. 1.Vanderbilt University Institute of Imaging Science (VUIIS)Vanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleUSA
  3. 3.Program in Chemical and Physical BiologyVanderbilt University Medical CenterNashvilleUSA
  4. 4.Vanderbilt-Ingram Cancer CenterVanderbilt University Medical CenterNashvilleUSA
  5. 5.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  6. 6.Department of NeurosurgeryVanderbilt University Medical CenterNashvilleUSA
  7. 7.Vanderbilt Institute of Chemical BiologyVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations