Molecular Imaging and Biology

, Volume 16, Issue 5, pp 642–651 | Cite as

Tracking of Cell Nuclei for Assessment of In Vitro Uptake Kinetics in Ultrasound-Mediated Drug Delivery Using Fibered Confocal Fluorescence Microscopy

  • Marc Derieppe
  • Baudouin Denis de Senneville
  • Hugo Kuijf
  • Chrit Moonen
  • Clemens Bos
Research Article



Previously, we demonstrated the feasibility to monitor ultrasound-mediated uptake of a cell-impermeable model drug in real time with fibered confocal fluorescence microscopy. Here, we present a complete post-processing methodology, which corrects for cell displacements, to improve the accuracy of pharmacokinetic parameter estimation.


Nucleus detection was performed based on the radial symmetry transform algorithm. Cell tracking used an iterative closest point approach. Pharmacokinetic parameters were calculated by fitting a two-compartment model to the time-intensity curves of individual cells.


Cells were tracked successfully, improving time-intensity curve accuracy and pharmacokinetic parameter estimation. With tracking, 93 % of the 370 nuclei showed a fluorescence signal variation that was well-described by a two-compartment model. In addition, parameter distributions were narrower, thus increasing precision.


Dedicated image analysis was implemented and enabled studying ultrasound-mediated model drug uptake kinetics in hundreds of cells per experiment, using fiber-based confocal fluorescence microscopy.

Key words

Drug delivery Pharmacokinetic parameters Biological barrier Plasma membrane permeabilization Ultrasound bioeffects Fibered confocal fluorescence microscopy Single-particle tracking 



These studies were supported by the EU project SonoDrugs (FP7-NMP4-LA-2008-213706) and ERC project 268906 “Sound Pharma.”

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11307_2014_726_MOESM1_ESM.pdf (171 kb)
ESM 1 (PDF 170 kb)
Supplementary data – Videos 1, 2 and 3

Cell-nucleus tracking - monitoring of SYTOX Green cellular uptake. (MP4 4928 kb)

(MP4 2439 kb)

(MP4 4100 kb)


  1. 1.
    Jain RK (2001) Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 46:149–168PubMedCrossRefGoogle Scholar
  2. 2.
    Outomuro D, Grana DR, Azzato F et al (2007) Adriamycin-induced myocardial toxicity: new solutions for an old problem? Int J Cardiol 117:6–15PubMedCrossRefGoogle Scholar
  3. 3.
    Manzoor AA, Lindner LH, Landon CD et al (2012) Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res 72:5566–5575PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Li L, Ten Hagen TLM, Bolkestein M et al (2013) Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J Control Release 167:130–137PubMedCrossRefGoogle Scholar
  5. 5.
    Neumann E, Kakorin S, Tœnsing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48:3–16PubMedCrossRefGoogle Scholar
  6. 6.
    Teissie J, Golzio M, Rols M (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge. Biochim Biophys Acta (BBA) Gen Subj 1724:270–280CrossRefGoogle Scholar
  7. 7.
    Skauen DM, Zentner GM (1984) Phonophoresis. Int J Pharm 20:235–245CrossRefGoogle Scholar
  8. 8.
    Miller MW, Miller DL, Brayman AA (1996) A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 22:1131–1154PubMedCrossRefGoogle Scholar
  9. 9.
    Mitragotri S (2005) Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4:255–260PubMedCrossRefGoogle Scholar
  10. 10.
    Tsien RY (2003) Imagining imaging’s future. Nat Cell Biol 5(sup/1):16–21Google Scholar
  11. 11.
    Jaqaman K, Loerke D, Mettlen M et al (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Stepanova T, Slemmer J, Hoogenraad CC et al (2003) Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (End-Binding Protein 3-Green Fluorescent Protein). J Neurosci 23:2655–2664PubMedGoogle Scholar
  13. 13.
    Vercauteren D, Deschout H, Remaut K et al (2011) Dynamic colocalization microscopy to characterize intracellular trafficking of nanomedicines. ACS Nano 5:7874–7884PubMedCrossRefGoogle Scholar
  14. 14.
    Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399PubMedCrossRefGoogle Scholar
  15. 15.
    Essers J, Houtsmuller AB, van Veelen L (2002) Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. EMBO J 21:2030–2037PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Molenaar C, Wiesmeijer K, Verwoerd NP et al (2003) Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J 22(24):6631–6641PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Derieppe M, Yudina A, Lepetit-Coiffé M et al (2012) Real-time assessment of ultrasound-mediated drug delivery using fibered confocal fluorescence microscopy. Mol Imaging Biol 15:3–11CrossRefGoogle Scholar
  18. 18.
    Meijering E, Smal I, Danuser G (2006) Tracking in molecular bioimaging. IEEE Signal Process Mag 23:46–53CrossRefGoogle Scholar
  19. 19.
    Smith SM, Brady JM (1997) SUSAN—a new approach to low level image processing. Int J Comput Vis 23:45–78CrossRefGoogle Scholar
  20. 20.
    Loy G, Zelinsky A (2003) Fast radial symmetry for detecting points of interest. Pattern Anal Mach Intell IEEE Trans 25:959–973CrossRefGoogle Scholar
  21. 21.
    Kuijf HJ, de Bresser J, Geerlings MI et al (2012) Efficient detection of cerebral microbleeds on 7.0 T MR images using the radial symmetry transform. Neuro Image 59:2266–2273PubMedGoogle Scholar
  22. 22.
    Cressie N (1993) Statistics for spatial data. Wiley, Revised EditionGoogle Scholar
  23. 23.
    Horowitz SB (1972) The permeability of the amphibian oocyte nucleus, in situ. J Cell Biol 54:609–625PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gerace L, Burke B (1988) Functional organization of the nuclear envelope. Annu Rev Cell Biol 4:335–374PubMedCrossRefGoogle Scholar
  25. 25.
    Suh J, Dawson M, Hanes J (2005) Real-time multiple-particle tracking: applications to drug and gene delivery. Adv Drug Deliv Rev 57:63–78PubMedCrossRefGoogle Scholar
  26. 26.
    Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200PubMedCrossRefGoogle Scholar
  27. 27.
    Levi V, Gratton E (2007) Exploring dynamics in living cells by tracking single particles. Cell Biochem Biophys 48:1–15PubMedCrossRefGoogle Scholar
  28. 28.
    Smal I, Niessen W, Meijering E (2007) Advanced particle filtering for multiple object tracking in dynamic fluorescence microscopy images. Biomedical imaging: From nano to macro. ISBI 2007. 4th IEEE International Symposium on 1048–1051Google Scholar

Copyright information

© World Molecular Imaging Society 2014

Authors and Affiliations

  • Marc Derieppe
    • 1
  • Baudouin Denis de Senneville
    • 1
    • 2
  • Hugo Kuijf
    • 1
  • Chrit Moonen
    • 1
  • Clemens Bos
    • 1
  1. 1.Imaging DivisionUniversity Medical Center UtrechtUtrechtNetherlands
  2. 2.Institut de Mathématiques de BordeauxUMR 5251 CNRS-Université Bordeaux 1-INRIABordeauxFrance

Personalised recommendations