Molecular Imaging and Biology

, Volume 16, Issue 4, pp 558–566 | Cite as

Radiolabeled RGD Tracer Kinetics Annotates Differential αvβ3 Integrin Expression Linked to Cell Intrinsic and Vessel Expression

  • Israt S. Alam
  • Timothy H. Witney
  • Giampaolo Tomasi
  • Laurence Carroll
  • Frazer J. Twyman
  • Quang-Dé Nguyen
  • Eric O. AboagyeEmail author
Research Article



The purpose of this paper is to study the association between RGD binding kinetics and αvβ3 integrin receptor density in the complex tumor milieu.


We assessed αvβ3 in vitro and by 68Ga-DOTA-[c(RGDfK)]2 positron emission tomography (PET) in tumors with varying αvβ3.


Intrinsic αvβ3 expression decreased in the order of M21 >>> MDA-MB-231 > M21L in cells. Tumor volume of distribution by PET, V T, was significantly higher in M21 compared to isogenic M21L tumors (0.40 ± 0.01 versus 0.25 ± 0.02; p < 0.01) despite similar microvessel density (MVD) likely due to higher αvβ3. V T for MDA-MB-231 (0.40 ± 0.04) was comparable to M21 despite lower αvβ3 but in keeping with the higher MVD, suggesting superior tracer distribution.


This study demonstrates that radioligand binding kinetics of PET data can be used to discriminate tumors with different αvβ3 integrin expression—a key component of the angiogenesis phenotype—in vivo.

Key words

Integrin RGD peptide Positron emission tomography Kinetic modeling Vasculature 



This work was funded by Cancer Research UK-Engineering and Physical Sciences Research Council grant C2536/A10337. E.O.A’s laboratory receives core funding from the UK Medical Research Council (MC US A652 0030).

Conflict of Interest

The authors declare no conflicts of interest.

Supplementary material

11307_2013_710_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2.05 mb)


  1. 1.
    Felding-Habermann B, O’Toole TE, Smith JW et al (2001) Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci U S A 98:1853–1858PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Takayama S, Ishii S, Ikeda T et al (2005) The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression. Anticancer Res 25:79–83PubMedGoogle Scholar
  3. 3.
    Landen CN, Kim TJ, Lin YG et al (2008) Tumor-selective response to antibody-mediated targeting of alphavbeta3 integrin in ovarian cancer. Neoplasia 10:1259–1267PubMedCentralPubMedGoogle Scholar
  4. 4.
    Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100PubMedCrossRefGoogle Scholar
  5. 5.
    Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA (1992) Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest 89:2018–2022PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Plow EF, Haas TA, Zhang L et al (2000) Ligand binding to integrins. J Biol Chem 275:21785–21788PubMedCrossRefGoogle Scholar
  7. 7.
    Lang L, Li W, Guo N et al (2011) Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconjug Chem 22:2415–2422PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kenny LM, Coombes RC, Oulie I et al (2008) Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 49:879–886PubMedCrossRefGoogle Scholar
  9. 9.
    Wu Z, Li ZB, Chen K et al (2007) microPET of tumor integrin alphavbeta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med 48:1536–1544PubMedCrossRefGoogle Scholar
  10. 10.
    Beer AJ, Grosu AL, Carlsen J et al (2007) [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6610–6616PubMedCrossRefGoogle Scholar
  11. 11.
    Janssen ML, Oyen WJ, Dijkgraaf I et al (2002) Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151PubMedGoogle Scholar
  12. 12.
    Battle MR, Goggi JL, Allen L et al (2011) Monitoring tumor response to antiangiogenic sunitinib therapy with 18F-fluciclatide, an 18F-labeled alphaVbeta3-integrin and alphaV beta5-integrin imaging agent. J Nucl Med 52:424–430PubMedCrossRefGoogle Scholar
  13. 13.
    Gaertner FC, Kessler H, Wester HJ et al (2012) Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging 39(Suppl 1):S126–S138PubMedCrossRefGoogle Scholar
  14. 14.
    Tomasi G, Kenny L, Mauri F et al (2011) Quantification of receptor-ligand binding with [18F]fluciclatide in metastatic breast cancer patients. Eur J Nucl Med Mol Imaging 38:2186–2197PubMedCrossRefGoogle Scholar
  15. 15.
    Guo N, Lang L, Gao H, et al. (2012) Quantitative Analysis and Parametric Imaging of (18)F-Labeled Monomeric and Dimeric RGD Peptides Using Compartment Model. Mol Imaging Biol.Google Scholar
  16. 16.
    Zhang X, Xiong Z, Wu Y et al (2006) Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 47:113–121PubMedGoogle Scholar
  17. 17.
    Alam IS, Neves AA, Witney TH et al (2010) Comparison of the C2A domain of synaptotagmin-I and annexin-V as probes for detecting cell death. Bioconjug Chem 21:884–891PubMedCrossRefGoogle Scholar
  18. 18.
    Witney TH, Kettunen MI, Day SE, et al. (2009) A comparison between radiolabeled fluorodeoxyglucose uptake and hyperpolarized (13)C-labeled pyruvate utilization as methods for detecting tumor response to treatment. Neoplasia 11:574-582, 571 p following 582.Google Scholar
  19. 19.
    Workman P, Aboagye EO, Balkwill F et al (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102:1555–1577PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Witney TH, Alam IS, Turton DR et al (2012) Evaluation of deuterated 18F- and 11C-labeled choline analogs for cancer detection by positron emission tomography. Clin Cancer Res 18:1063–1072PubMedCrossRefGoogle Scholar
  21. 21.
    Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324:1–8PubMedCrossRefGoogle Scholar
  22. 22.
    Cheresh DA, Spiro RC (1987) Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor. J Biol Chem 262:17703–17711PubMedGoogle Scholar
  23. 23.
    Beer AJ, Haubner R, Sarbia M et al (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 12:3942–3949PubMedCrossRefGoogle Scholar
  24. 24.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMedCrossRefGoogle Scholar
  25. 25.
    Gasparini G, Brooks PC, Biganzoli E et al (1998) Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin Cancer Res 4:2625–2634PubMedGoogle Scholar
  26. 26.
    Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546PubMedCrossRefGoogle Scholar
  27. 27.
    Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22PubMedCrossRefGoogle Scholar
  28. 28.
    Takagi J, Petre BM, Walz T, Springer TA (2002) Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110:599–511PubMedCrossRefGoogle Scholar
  29. 29.
    Dumont RA, Hildebrandt I, Su H et al (2009) Noninvasive imaging of alphaVbeta3 function as a predictor of the antimigratory and antiproliferative effects of dasatinib. Cancer Res 69:3173–3179PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2013

Authors and Affiliations

  • Israt S. Alam
    • 1
  • Timothy H. Witney
    • 1
  • Giampaolo Tomasi
    • 1
  • Laurence Carroll
    • 1
  • Frazer J. Twyman
    • 1
  • Quang-Dé Nguyen
    • 1
  • Eric O. Aboagye
    • 1
    Email author
  1. 1.Comprehensive Cancer Imaging Centre, Faculty of MedicineImperial College LondonLondonUK

Personalised recommendations