Advertisement

Molecular Imaging and Biology

, Volume 16, Issue 3, pp 431–440 | Cite as

A Phase 2 Study of 16α-[18F]-fluoro-17β-estradiol Positron Emission Tomography (FES-PET) as a Marker of Hormone Sensitivity in Metastatic Breast Cancer (MBC)

  • Lanell M. Peterson
  • Brenda F. Kurland
  • Erin K. Schubert
  • Jeanne M. Link
  • V.K. Gadi
  • Jennifer M. Specht
  • Janet F. Eary
  • Peggy Porter
  • Lalitha K. Shankar
  • David A. Mankoff
  • Hannah M. Linden
Research Article

Abstract

Purpose

16α-[18F]-fluoro-17β-estradiol positron emission tomography (FES-PET) quantifies estrogen receptor (ER) expression in tumors and may provide diagnostic benefit.

Procedures

Women with newly diagnosed metastatic breast cancer (MBC) from an ER-positive primary tumor were imaged before starting endocrine therapy. FES uptake was evaluated qualitatively and quantitatively, and associated with response and with ER expression.

Results

Nineteen patients underwent FES imaging. Fifteen had a biopsy of a metastasis and 15 were evaluable for response. Five patients had quantitatively low FES uptake, six had at least one site of qualitatively FES-negative disease. All patients with an ER-negative biopsy had both low uptake and at least one site of FES-negative disease. Of response-evaluable patients, 2/2 with low FES standard uptake value tumors had progressive disease within 6 months, as did 2/3 with qualitatively FES-negative tumors.

Conclusions

Low/absent FES uptake correlates with lack of ER expression. FES-positron emission tomography can help identify patients with endocrine resistant disease and safely measures ER in MBC.

Key words

FES-PET FDG-PET Metastatic breast cancer ER expression Endocrine therapy Response 

Notes

Acknowledgements and Support

The authors would like to thank Eunice How, the radiochemistry staff, nuclear medicine technologists, and physicists in the UW Department of Radiology as well as the staff of the Fred Hutchinson Breast Cancer Research Center Cancer Biology lab. This study was sponsored by the NCI Phase I and II Cancer Imaging Program (Contract #N01-CM-37008, Protocol 8052) and was supported by the UPCI Biostatistics Shared Resource (P30CA047904).

Conflict of interest

None

Supplementary material

11307_2013_699_MOESM1_ESM.pdf (237 kb)
ESM 1 (PDF 236 kb)

References

  1. 1.
    DeSantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics. CA Cancer J Clin 61(6):409–418PubMedGoogle Scholar
  2. 2.
    Chia SK, Speers CH, D'Yachkova Y et al (2007) The impact of new chemotherapeutic and hormone agents on survival in a population-based cohort of women with metastatic breast cancer. Cancer 110(5):973–979PubMedCrossRefGoogle Scholar
  3. 3.
    Carlson RW (2002) Sequencing of endocrine therapies in breast cancer—integration of recent data. Breast Cancer Res Treat 75(Suppl 1):S27–S32, discussion S33–S25PubMedCrossRefGoogle Scholar
  4. 4.
    Major MA (2003) Clinical trials update: medical management of advanced breast cancer. Cancer Nurs 26(6 Suppl):10S–15SPubMedGoogle Scholar
  5. 5.
    Carlson RW, Allred DC, Anderson BO et al (2012) Metastatic breast cancer, version 1.2012: featured updates to the NCCN guidelines. J Natl Compr Canc Netw 10(7):821–829PubMedCentralPubMedGoogle Scholar
  6. 6.
    Dehdashti F, Mortimer JE, Siegel BA et al (1995) Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med 36(10):1766–1774PubMedGoogle Scholar
  7. 7.
    Linden HM, Ramsey S, Anderson N (2004) An ounce of prevention or a pound of cure? Investing to improve breast cancer outcomes for African American women. J Clin Oncol 22(13):2517–2518PubMedCrossRefGoogle Scholar
  8. 8.
    Linden HM, Link JM, Stekhova S et al (2005) Serial 18F-fluoroestradiol positron emission tomography (FES PET) measures estrogen receptor binding during endocrine therapy. Breast Cancer Res Treat 94(Suppl 1):S1–S287Google Scholar
  9. 9.
    Linden HM, Stekhova SA, Link JM et al (2006) Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 24(18):2793–2799PubMedCrossRefGoogle Scholar
  10. 10.
    Mankoff DA, Peterson LM, Tewson TJ et al (2001) [18F]fluoroestradiol radiation dosimetry in human PET studies. J Nucl Med 42(4):679–684PubMedGoogle Scholar
  11. 11.
    Peterson LM, Kurland BF, Link JM et al (2011) Factors influencing the uptake of 18F-fluoroestradiol in patients with estrogen receptor positive breast cancer. Nucl Med Biol 38(7):969–978PubMedCrossRefGoogle Scholar
  12. 12.
    Mintun MA, Welch MJ, Siegel BA et al (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169(1):45–48PubMedGoogle Scholar
  13. 13.
    Peterson LM, Mankoff DA, Lawton T et al (2008) Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 49(3):367–374PubMedCrossRefGoogle Scholar
  14. 14.
    Mortimer JE, Dehdashti F, Siegel BA et al (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19(11):2797–2803PubMedGoogle Scholar
  15. 15.
    Mortimer JE, Dehdashti F, Siegel BA et al (1996) Positron emission tomography with 2-[18F]Fluoro-2-deoxy-d-glucose and 16alpha-[18F]fluoro-17beta-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin Cancer Res 2(6):933–939PubMedGoogle Scholar
  16. 16.
    Lim JL, Zheng L, Berridge MS, Tewson TJ (1996) The use of 3-methoxymethyl-16 beta, 17 beta-epiestriol-O-cyclic sulfone as the precursor in the synthesis of F-18 16 alpha-fluoroestradiol. Nucl Med Biol 23(7):911–915PubMedCrossRefGoogle Scholar
  17. 17.
    Romer J, Fuchtner F, Steinbach J, Johannsen B (1999) Automated production of 16alpha-[18F]fluoroestradiol for breast cancer imaging. Nucl Med Biol 26(4):473–479PubMedCrossRefGoogle Scholar
  18. 18.
    Romer J, Fuchtner F, Steinbach J, Kasch H (2001) Automated synthesis of 16alpha-[18F]fluoroestradiol-3,17beta-disulphamate. Appl Radiat Isot 55(5):631–639PubMedCrossRefGoogle Scholar
  19. 19.
    Mankoff DA, Tewson TJ, Eary JF (1997) Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16 alpha-fluoroestradiol (FES). Nucl Med Biol 24(4):341–348PubMedCrossRefGoogle Scholar
  20. 20.
    Kurland BF, Peterson LM, Lee JH et al (2011) Between-patient and within-patient (site-to-site) variability in estrogen receptor binding, measured in vivo by 18F-fluoroestradiol PET. J Nucl Med 52(10):1541–1549PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Dehdashti F, Mortimer JE, Trinkaus K et al (2009) PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res Treat 113(3):509–517PubMedCrossRefGoogle Scholar
  22. 22.
    van Kruchten M, Glaudemans AW, de Vries EF et al (2012) PET imaging of estrogen receptors as a diagnostic tool for breast cancer patients presenting with a clinical dilemma. J Nucl Med 53(2):182–190PubMedCrossRefGoogle Scholar
  23. 23.
    Thie JA, Hubner KF, Smith GT (2000) The diagnostic utility of the lognormal behavior of PET standardized uptake values in tumors. J Nucl Med 41(10):1664–1672PubMedGoogle Scholar
  24. 24.
    Mankoff DA (2009) Molecular imaging to select cancer therapy and evaluate treatment response. Q J Nucl Med Mol Imaging 53(2):181–192PubMedGoogle Scholar
  25. 25.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247PubMedCrossRefGoogle Scholar
  26. 26.
    Stafford SE, Gralow JR, Schubert EK et al (2002) Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol 9(8):913–921PubMedCrossRefGoogle Scholar
  27. 27.
    Specht JM, Tam SL, Kurland BF et al (2007) Serial 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) to monitor treatment of bone-dominant metastatic breast cancer predicts time to progression (TTP). Breast Cancer Res Treat 105(1):87–94PubMedCrossRefGoogle Scholar
  28. 28.
    Gennari A, Donati S, Salvadori B et al (2000) Role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients. Clin Breast Cancer 1(2):156–161, discussion 162–153PubMedCrossRefGoogle Scholar
  29. 29.
    Tateishi U, Gamez C, Dawood S et al (2008) Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT. Radiology 247(1):189–196PubMedCrossRefGoogle Scholar
  30. 30.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150SPubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Porter PL, El-Bastawissi AY, Mandelson MT et al (1999) Breast tumor characteristics as predictors of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 91(23):2020–2028PubMedCrossRefGoogle Scholar
  32. 32.
    Porter PL, Lund MJ, Lin MG et al (2004) Racial differences in the expression of cell cycle-regulatory proteins in breast carcinoma. Cancer 100(12):2533–2542PubMedCrossRefGoogle Scholar
  33. 33.
    Porter PL, Malone KE, Heagerty PJ et al (1997) Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med 3(2):222–225PubMedCrossRefGoogle Scholar
  34. 34.
    Yaziji H, Goldstein LC, Barry TS et al (2004) HER-2 testing in breast cancer using parallel tissue-based methods. JAMA 291(16):1972–1977PubMedCrossRefGoogle Scholar
  35. 35.
    Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17(5):1474–1481PubMedGoogle Scholar
  36. 36.
    Lancaster H (1961) Significance tests in discrete distributions. J Am Stat Assoc 56:226–234CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2013

Authors and Affiliations

  • Lanell M. Peterson
    • 1
  • Brenda F. Kurland
    • 2
    • 3
  • Erin K. Schubert
    • 1
    • 4
  • Jeanne M. Link
    • 5
  • V.K. Gadi
    • 2
    • 6
  • Jennifer M. Specht
    • 2
    • 6
  • Janet F. Eary
    • 5
  • Peggy Porter
    • 2
  • Lalitha K. Shankar
    • 7
  • David A. Mankoff
    • 1
    • 4
  • Hannah M. Linden
    • 2
    • 6
  1. 1.Radiology/Nuclear MedicineUniversity of Washington Medical Center–Seattle Cancer Care AllianceSeattleUSA
  2. 2.Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleUSA
  3. 3.BiostatisticsUniversity of PittsburghPittsburghUSA
  4. 4.Radiology/Nuclear MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Radiology/Nuclear MedicineUniversity of Washington Medical CenterSeattleUSA
  6. 6.Medical OncologyUniversity of Washington Medical Center–Seattle Cancer Care AllianceSeattleUSA
  7. 7.Cancer Imaging ProgramNational Cancer InstituteBethesdaUSA

Personalised recommendations