Molecular Imaging and Biology

, Volume 16, Issue 1, pp 1–9 | Cite as

Shifting Focus in Optical Image-Guided Cancer Therapy

  • Stijn KeereweerEmail author
  • Pieter B. A. A. Van Driel
  • Dominic J. Robinson
  • Clemens W. G. M. Lowik
Special Topics


Cancer patients could benefit from a surgical procedure that helps the surgeon to determine adequate tumor resection margins. Systemic injection of tumor-specific fluorescence agents with subsequent intraoperative optical imaging can guide the surgeon in this process. However, tumor heterogeneity hampers tumor-specific targeting. In addition, determination of adequate resection margins can be very challenging due to invasive tumor strands that are difficult to resolve and because of the confounding effect of variations in tissue optical properties in the surgical margin. We provide an overview of the “classic approach” of imaging tumor-specific targets or tumor-associated pathophysiological processes, and explain the limitations of these targeting strategies. It is proposed that problems of tumor heterogeneity can theoretically be circumvented by shifting focus of tumor targeting towards the follicle-stimulating hormone receptor (FSHR). Furthermore, we discuss why objective determination of resection margins is required to improve resection of the invasive strands, a goal that may be achieved by targeting the FSHR. When invasive strands would nevertheless extend beyond such a standardized resection margin, we suggest that adjuvant photodynamic therapy would be a very suitable therapeutic regimen. Finally, we describe how point optical spectroscopy can be used to scrutinize suspect tissue that is difficult to differentiate from normal tissue by measuring the local tissue optical properties to recover a local intrinsic fluorescence measurement.

Key words

Optical imaging Image-guided therapy Follicle-stimulating hormone Cancer therapy Photodynamic therapy Point spectroscopy 



MTN is gratefully acknowledged for his supporting contribution during the writing process.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    van Dam GM, Themelis G, Crane LM et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17:1315–1319PubMedCrossRefGoogle Scholar
  2. 2.
    Alexander S, Friedl P (2012) Cancer invasion and resistance: interconnected processes of disease progression and therapy failure. Trends Mol Med 18:13–26PubMedCrossRefGoogle Scholar
  3. 3.
    Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009PubMedCrossRefGoogle Scholar
  4. 4.
    Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14:71–79PubMedCrossRefGoogle Scholar
  5. 5.
    Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634PubMedCrossRefGoogle Scholar
  6. 6.
    Gioux S, Choi HS, Frangioni JV (2010) Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 9:237–255PubMedCentralPubMedGoogle Scholar
  7. 7.
    Keereweer S, Van Driel PB, Snoeks TJ et al (2013) Optical image-guided cancer surgery: challenges and limitations. Clinical Cancer Research 19(14):3745–54PubMedCrossRefGoogle Scholar
  8. 8.
    Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334PubMedCrossRefGoogle Scholar
  10. 10.
    Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New England J Med 366:883–892CrossRefGoogle Scholar
  11. 11.
    Li Y, Bai S, Carroll W et al (2012) Validation of the risk model: high-risk classification and tumor pattern of invasion predict outcome for patients with low-stage oral cavity squamous cell carcinoma. Head Neck Pathol 7(3):211–23PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Hinni ML, Ferlito A, Brandwein-Gensler MS et al (2012) Surgical margins in head and neck cancer: a contemporary review. Head Neck 35(9):1362–70PubMedCrossRefGoogle Scholar
  13. 13.
    Martling A, Cedermark B, Johansson H et al (2002) The surgeon as a prognostic factor after the introduction of total mesorectal excision in the treatment of rectal cancer. Br J Surg 89:1008–1013PubMedCrossRefGoogle Scholar
  14. 14.
    Chance B (1998) Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann N Y Acad Sci 838:29–45PubMedCrossRefGoogle Scholar
  15. 15.
    Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603–614PubMedCrossRefGoogle Scholar
  16. 16.
    Valdes PA, Leblond F, Jacobs VL et al (2012) Quantitative, spectrally-resolved intraoperative fluorescence imaging. Sci Rep 2:798PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Zhu B, Wu G, Robinson H, et al. (2013) Tumor margin detection using quantitative NIRF molecular imaging targeting EpCAM validated by Far Red Gene Reporter iRFP. Molecular Imaging and Biology : MIBGoogle Scholar
  18. 18.
    Themelis G, Yoo JS, Soh KS et al (2009) Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Opt 14:064012PubMedCrossRefGoogle Scholar
  19. 19.
    Keereweer S, Kerrebijn JD, van Driel PB et al (2011) Optical image-guided surgery–where do we stand? Mol Imaging Biol 13:199–207PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Van Driel PBAA, Keereweer S, Snoeks TJA, Lowik CWGM (2013) Fluorescence-Guided Surgery: A Promising Approach for Future Oncologic Surgery. In Comprehensive Biomedical Physics. Elsevier, OxfordGoogle Scholar
  21. 21.
    Keereweer S, Mol IM, Vahrmeijer AL et al (2012) Dual wavelength tumor targeting for detection of hypopharyngeal cancer using near-infrared optical imaging in an animal model. Int J Cancer 131(7):1633–40PubMedCrossRefGoogle Scholar
  22. 22.
    Mieog JS, Hutteman M, van der Vorst JR et al (2011) Image-guided tumor resection using real-time near-infrared fluorescence in a syngeneic rat model of primary breast cancer. Breast Cancer Res Treatment 128:679–689CrossRefGoogle Scholar
  23. 23.
    Kovar JL, Volcheck W, Sevick-Muraca E et al (2009) Characterization and performance of a near-infrared 2-deoxyglucose optical imaging agent for mouse cancer models. Analytical Biochemistry 384:254–262PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kossodo S, Pickarski M, Lin SA et al (2010) Dual in vivo quantification of integrin-targeted and protease-activated agents in cancer using fluorescence molecular tomography (FMT). Mol Imag Biol: MIB : official publication Acad Mol Imag 12:488–499CrossRefGoogle Scholar
  25. 25.
    Keereweer S, Mol IM, Kerrebijn JD et al (2011) Targeting integrins and enhanced permeability and retention (EPR) effect for optical imaging of oral cancer. J Surg Oncol 105(7):714–8PubMedCrossRefGoogle Scholar
  26. 26.
    Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375–378PubMedCrossRefGoogle Scholar
  27. 27.
    Blum G, von Degenfeld G, Merchant MJ et al (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3:668–677PubMedCrossRefGoogle Scholar
  28. 28.
    Keereweer S, Mieog JS, Mol IM et al (2011) Detection of oral squamous cell carcinoma and cervical lymph node metastasis using activatable near-infrared fluorescence agents. Arch Otolaryngol Head Neck Surg 137:609–615PubMedCrossRefGoogle Scholar
  29. 29.
    Radu A, Pichon C, Camparo P et al (2010) Expression of follicle-stimulating hormone receptor in tumor blood vessels. New England J Med 363:1621–1630CrossRefGoogle Scholar
  30. 30.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMedCrossRefGoogle Scholar
  31. 31.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRefGoogle Scholar
  32. 32.
    Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151PubMedCrossRefGoogle Scholar
  33. 33.
    Maeda H (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjugate Chem 21:797–802CrossRefGoogle Scholar
  34. 34.
    Kovar JL, Johnson MA, Volcheck WM et al (2006) Hyaluronidase expression induces prostate tumor metastasis in an orthotopic mouse model. American J Pathol 169:1415–1426CrossRefGoogle Scholar
  35. 35.
    Chance B (1998) Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Annals New York Acad Sci 838:29–45CrossRefGoogle Scholar
  36. 36.
    Agostinis P, Berg K, Cengel KA et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–545PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Gil M, Bieniasz M, Seshadri M et al (2011) Photodynamic therapy augments the efficacy of oncolytic vaccinia virus against primary and metastatic tumours in mice. Br J Cancer 105:1512–1521PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Hendren SK, Hahn SM, Spitz FR et al (2001) Phase II trial of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. Annals Surg Oncol 8:65–71CrossRefGoogle Scholar
  40. 40.
    Schmitt F, Juillerat-Jeanneret L (2012) Drug targeting strategies for photodynamic therapy. Anticancer Agents Med Chem 12:500–525PubMedCrossRefGoogle Scholar
  41. 41.
    Bugaj AM (2011) Targeted photodynamic therapy–a promising strategy of tumor treatment. Photochemical Photobiological Sciences 10:1097–1109PubMedCrossRefGoogle Scholar
  42. 42.
    Yang X, Shi C, Tong R et al (2010) Near IR heptamethine cyanine dye-mediated cancer imaging. Clin Cancer Res 16:2833–2844PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Tan X, Luo S, Wang D, Su Y, Cheng T, Shi C (2012) A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties. Biomaterials 33:2230–2239PubMedCrossRefGoogle Scholar
  44. 44.
    Kepczynski M, Dzieciuch M, Nowakowska M (2012) Nanostructural hybrid sensitizers for photodynamic therapy. Curr Pharm Des 18:2607–2621PubMedCrossRefGoogle Scholar
  45. 45.
    Amelink A, Kruijt B, Robinson DJ, Sterenborg HJ (2008) Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy. J Biomed Optics 13:054051CrossRefGoogle Scholar
  46. 46.
    Kanick SC, Sterenborg HJ, Amelink A (2009) Empirical model of the photon path length for a single fiber reflectance spectroscopy device. Optics Express 17:860–871PubMedCrossRefGoogle Scholar
  47. 47.
    Kanick SC, Sterenborg HJ, Amelink A (2008) Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption. J Biomed Optics 13:064042CrossRefGoogle Scholar
  48. 48.
    Kanick SC, Robinson DJ, Sterenborg HJ, Amelink A (2009) Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth. Phys Med Biol 54:6991–7008PubMedCrossRefGoogle Scholar
  49. 49.
    Kanick SC, Robinson DJ, Sterenborg HJ, Amelink A (2011) Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties. Optics Lett 36:2791–2793CrossRefGoogle Scholar
  50. 50.
    Kanick SC, Gamm UA, Sterenborg HJ et al (2011) Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium. Optics Lett 36:2997–2999CrossRefGoogle Scholar
  51. 51.
    Kanick SC, Robinson DJ, Sterenborg HJ, Amelink A (2012) Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium. Optics Lett 37:948–950CrossRefGoogle Scholar
  52. 52.
    Gamm UA, Kanick SC, Sterenborg HJ et al (2012) Quantification of the reduced scattering coefficient and phase-function-dependent parameter gamma of turbid media using multidiameter single fiber reflectance spectroscopy: experimental validation. Optics Lett 37:1838–1840CrossRefGoogle Scholar
  53. 53.
    Kanick SC, Gamm UA, Schouten M et al (2011) Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence. Biomed Opt Express 2:1687–1702PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    van Leeuwen-van ZF, Gamm UA, van Driel PB et al (2013) In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy. Biomed Opt Express 4:696–708CrossRefGoogle Scholar
  55. 55.
    Valdes PA, Leblond F, Kim A et al (2011) Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg 115:11–17PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Roy HK, Backman V (2012) Spectroscopic applications in gastrointestinal endoscopy. Clin Gastroenterol Hepatol 10:1335–1341PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Hoy CL, Gamm UA, Sterenborg HJ et al (2012) Use of a coherent fiber bundle for multi-diameter single fiber reflectance spectroscopy. Biomed Opt Express 3:2452–2464PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Nijssen A, Koljenovic S, Bakker Schut TC et al (2009) Towards oncological application of Raman spectroscopy. J Biophotonics 2:29–36PubMedCrossRefGoogle Scholar
  59. 59.
    Braakhuis BJ, Tabor MP, Kummer JA et al (2003) A genetic explanation of Slaughter's concept of field cancerization: evidence and clinical implications. Cancer Res 63:1727–1730PubMedGoogle Scholar
  60. 60.
    Graveland AP, Golusinski PJ, Buijze M et al (2011) Loss of heterozygosity at 9p and p53 immunopositivity in surgical margins predict local relapse in head and neck squamous cell carcinoma. Int J Cancer 128:1852–1859PubMedCrossRefGoogle Scholar
  61. 61.
    Califano J, van der Riet P, Westra W et al (1996) Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 56:2488–2492PubMedGoogle Scholar
  62. 62.
    Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11:9–22PubMedCrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2013

Authors and Affiliations

  • Stijn Keereweer
    • 1
    • 2
    Email author
  • Pieter B. A. A. Van Driel
    • 1
  • Dominic J. Robinson
    • 3
  • Clemens W. G. M. Lowik
    • 1
  1. 1.Department of Molecular ImagingLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Department of Otorhinolaryngology-Head and Neck SurgeryErasmus Medical CenterRotterdamThe Netherlands
  3. 3.Center for Optical Diagnostics and Therapy, Postgraduate School of Molecular Medicine, Department of DermatologyErasmus Medical CenterRotterdamThe Netherlands

Personalised recommendations