Skip to main content

Advertisement

Log in

Comparison of PET Imaging with 64Cu-Liposomes and 18F-FDG in the 7,12-Dimethylbenz[a]anthracene (DMBA)-Induced Hamster Buccal Pouch Model of Oral Dysplasia and Squamous Cell Carcinoma

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Currently, 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) is the gold standard radiotracer for staging of head and neck cancer; however, the low sensitivity of this tracer can impede detection of early lesions. 64Cu-liposomes accumulate in various cancers and provide both a sensitive tracer and an indication of the biodistribution of nanotherapeutics. Here, the accumulation of 64Cu-liposomes in early and established cancers is assessed and compared with 18F-FDG in a head and neck cancer model.

Methods

Lesions ranging from mild dysplasia to squamous cell carcinoma were induced in a hamster model of head and neck cancer by topical application of 7,12-dimethylbenz[a]anthracene to the buccal pouch. The hamsters were imaged with micro-positron emission tomography using 18F-FDG and 64Cu-liposomes.

Results

At 24 h postinjection, 64Cu-liposome accumulation exceeded the accumulation of 18F-FDG in every pathologic grade. The lesion-to-cheek pouch (background) ratio and lesion-to-brain ratio were also higher for 64Cu-liposomes than for 18F-FDG.

Conclusion

Imaging of a nanotracer such as 64Cu-liposomes can improve the visualization of head and neck tumors. Accumulation of liposomal particles in head and neck tumors over various pathologic grades averaged 3.5 %ID/cc demonstrating the potential for liposomal therapy with targeted chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saman DM (2012) A review of the epidemiology of oral and pharyngeal carcinoma: update. Head Neck Oncol 4:1

    Article  PubMed Central  PubMed  Google Scholar 

  2. Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11:9–22

    Article  CAS  PubMed  Google Scholar 

  3. Kesting MR et al (2009) Results of esophagogastroduodenoscopy in patients with oral squamous cell carcinoma—value of endoscopic screening: 10-year experience. Int J Oral Maxillofac Surg 67:1649–1655

    Article  Google Scholar 

  4. Yang Y, Ge JP, Zhou ZT (2009) Effects of thalidomide on DMBA-induced oral carcinogenesis in hamster with respect to angiogenesis. J Oral Pathol Med 38:455–462

    Article  CAS  PubMed  Google Scholar 

  5. Farwell DG et al (2010) Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma validation in the hamster buccal pouch model. Arch Otolaryngol Head Neck Surg 136:126–133

    Article  PubMed  Google Scholar 

  6. NIH (2011) Oral cancer 5-year survival rates by race, gender, and stage of diagnosis, National Institute of Dental and Craniofacial Research Bethesda, MD. http://www.nidcr.nih.gov/datastatistics/finddatabytopic/oralcancer/oralcancer5yearsurvivalrates.htm. Accessed 8 July 2013

  7. Chaturvedi AK, Engels EA, Anderson WF, Gillison ML (2008) Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J Clin Oncol 26:612–619

    Article  PubMed  Google Scholar 

  8. Chaturvedi AK et al (2011) Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 29:4294–4301

    Article  PubMed Central  PubMed  Google Scholar 

  9. Goon PK et al (2009) HPV & head and neck cancer: a descriptive update. Head Neck Oncol 1:36

    Article  PubMed Central  PubMed  Google Scholar 

  10. Al-Ibraheem A, Buck A, Krause BJ, Scheidhauer K, Schwaiger M (2009) Clinical applications of FDG PET and PET/CT in head and neck cancer. J Oncol 2009: 208725

  11. Yamazaki Y et al (2008) Assessment of cervical lymph node metastases using FDG-PET in patients with head and neck cancer. Ann Nucl Med 22:177–184

    Article  PubMed  Google Scholar 

  12. Zhang H et al (2008) Dynamic imaging of arginine-rich heart-targeted vehicles in a mouse model. Biomaterials 29:1976–1988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Seo JW, Zhang H, Kukis DL, Meares CF, Ferrara KW (2008) A novel method to label preformed liposomes with (CU)-C-64 for positron emission tomography (PET) imaging. Bioconjugate Chemistry 19:2577–2584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Seo JW et al (2010) Liposomal Cu-64 labeling method using bifunctional chelators: poly(ethylene glycol) spacer and chelator effects. Bioconjugate Chemistry 21:1206–1215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rygh CB et al (2011) Longitudinal investigation of permeability and distribution of macromolecules in mouse malignant transformation using PET. Clin Cancer Res 17:550–559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Watson KD et al (2012) Ultrasound increases nanoparticle delivery by reducing intratumoral pressure and increasing transport in epithelial and epithelial-mesenchymal transition tumors. Cancer Res 72:1485–1493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wong AW et al (2013) A comparison of image contrast with (64)Cu-labeled long circulating liposomes and (18)F-FDG in a murine model of mammary carcinoma. Am J of Nucl Med and Mol Imag 3:32–43

    CAS  Google Scholar 

  18. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  19. Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S (2004) Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliver Rev 56:1177–1192

    Article  CAS  Google Scholar 

  20. Paoli EE et al (2010) An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: importance of formulation. J Contr Release 143:13–22

    Article  CAS  Google Scholar 

  21. Sun Y et al (2009) Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Opt Lett 34:2081–2083

    Article  CAS  PubMed  Google Scholar 

  22. Meier JD et al (2010) Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma. Otolaryng Head Neck 142:838–844

    Article  Google Scholar 

  23. Shklar G (1972) Experimental oral pathology in the Syrian hamster. Progr Exp Tumor Res 16:518–538

    CAS  PubMed  Google Scholar 

  24. Manoharan S, Vasanthaselvan M, Silvan S, Baskaran N, Kumar Singh A, Vinoth Kumar V (2010) Carnosic acid: a potent chemopreventive agent against oral carcinogenesis. Chem Biol Interact 188:616–622

    Article  CAS  PubMed  Google Scholar 

  25. Thompson L (2006) World Health Organization classification of tumours: pathology and genetics of head and neck tumours. Ear Nose Throat J 85:74

    PubMed  Google Scholar 

  26. Manoharan S, Balakrishnan S, Menon VP, Alias LM, Reena AR (2009) Chemopreventive efficacy of curcumin and piperine during 7,12-dimethylbenz [a]anthracene-induced hamster buccal pouch carcinogenesis. Singap Med J 50:139–146

    CAS  Google Scholar 

  27. Maruyama K (2011) Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 63:161–169

    Article  CAS  PubMed  Google Scholar 

  28. Morris LG, Sikora AG, Patel SG, Hayes RB, Ganly I (2011) Second primary cancers after an index head and neck cancer: subsite-specific trends in the era of human papillomavirus-associated oropharyngeal cancer. J Clin Oncol: official journal of the American Society of Clinical Oncology 29:739–746

    Article  Google Scholar 

  29. Poh CFZL, Anderson DW, Durham JS, Williams PM, Priddy RW, Berean KW, Ng S, Tseng OL, MacAulay C, Rosin MP (2006) Fluorescence visualization detection of field alterations in tumor margins of oral cancer patients. Clin Cancer Res 12:6716–6722

    Article  CAS  PubMed  Google Scholar 

  30. Qin S, Seo JW, Zhang H, Qi J, Curry FR, Ferrara KW (2010) An imaging-driven model for liposomal stability and circulation. Mol Pharm 7:12–21

    Article  PubMed Central  PubMed  Google Scholar 

  31. Oku N et al (2011) PET imaging of brain cancer with positron emitter-labeled liposomes. Int J Pharm 403:170–177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by NIHR01CA103828 and NIHR01CA134659.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine W. Ferrara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 6,967 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahakian, L.M., Farwell, D.G., Zhang, H. et al. Comparison of PET Imaging with 64Cu-Liposomes and 18F-FDG in the 7,12-Dimethylbenz[a]anthracene (DMBA)-Induced Hamster Buccal Pouch Model of Oral Dysplasia and Squamous Cell Carcinoma. Mol Imaging Biol 16, 284–292 (2014). https://doi.org/10.1007/s11307-013-0676-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0676-1

Key words

Navigation