Advertisement

Molecular Imaging and Biology

, Volume 16, Issue 2, pp 274–283 | Cite as

Comparison of Three Dimeric 18F-AlF-NOTA-RGD Tracers

  • Jinxia Guo
  • Lixin Lang
  • Shuo Hu
  • Ning Guo
  • Lei Zhu
  • Zhongchan Sun
  • Ying Ma
  • Dale O. Kiesewetter
  • Gang Niu
  • Qingguo Xie
  • Xiaoyuan Chen
Research Article

Abstract

Purpose

RGD peptide-based radiotracers are well established as integrin αvβ3 imaging probes to evaluate tumor angiogenesis or tissue remodeling after ischemia or infarction. In order to optimize the labeling process and pharmacokinetics of the imaging probes, we synthesized three dimeric RGD peptides with or without PEGylation and performed in vivo screening.

Procedures

Radiolabeling was achieved through the reaction of F-18 aluminum–fluoride complex with the cyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Three imaging probes were synthesized as 18F-AlF-NOTA-E[c(RGDfK)]2, 18F-AlF-NOTA-PEG4-E[c(RGDfK)]2, and 18F-AlF-NOTA-E[PEG4-c(RGDfk)]2. The receptor binding affinity was determined by competitive cell binding assay, and the stability was evaluated by mouse serum incubation. Tumor uptake and whole body distribution of the three tracers were compared through direct tissue sampling and PET quantification of U87MG tumor-bearing mice.

Results

All three compounds remained intact after 120 min incubation with mouse serum. They all had a rapid and relatively high tracer uptake in U87MG tumors with good target-to-background ratios. Compared with the other two tracers, 18F-AlF-NOTA-E[PEG4-c(RGDfk)]2 had the highest tumor uptake and the lowest accumulation in the liver. The integrin receptor specificity was confirmed by co-injection of unlabeled dimeric RGD peptide.

Conclusion

The rapid one-step radiolabeling strategy by the complexation of 18F-aluminum fluoride with NOTA-peptide conjugates was successfully applied to synthesize three dimeric RGD peptides. Among the three probes developed, 18F-AlF-NOTA-E[PEG4-c(RGDfk)]2 with relatively low liver uptake and high tumor accumulation appears to be a promising candidate for further translational research.

Key words

NOTA Arginine–glycine–aspartic acid (RGD) PET Integrin αvβ3 Aluminum–fluoride complex 

Notes

Acknowledgments

This work was supported in part by the National Basic Research Program of China (973 Program) (No. 2013CB733800, 2013CB733802, 2014CB744503), the National Science Foundation of China (NSFC) (81201129, 81371596, 51373144 and 81101068), and the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11307_2013_668_MOESM1_ESM.doc (86 kb)
ESM 1 (DOC 85.5 KB)

References

  1. 1.
    Yang M, Gao H, Yan Y et al (2011) PET imaging of early response to the tyrosine kinase inhibitor ZD4190. Eur J Nucl Med Mol Imaging 38:1237–1247PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Niu G, Chen X (2011) Why integrin as a primary target for imaging and therapy. Theranostics 1:30–47PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Brooks PC, Montgomery AM, Rosenfeld M et al (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164PubMedCrossRefGoogle Scholar
  4. 4.
    Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(Suppl 2):113S–128SPubMedCrossRefGoogle Scholar
  5. 5.
    Backer MV, Backer JM (2012) Imaging key biomarkers of tumor angiogenesis. Theranostics 2:502–515PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Noiri E, Goligorsky MS, Wang GJ et al (1996) Biodistribution and clearance of 99mTc-labeled Arg-Gly-Asp (RGD) peptide in rats with ischemic acute renal failure. J Am Soc Nephrol 7:2682–2688PubMedGoogle Scholar
  7. 7.
    Ahmadi M, Sancey L, Briat A et al (2008) Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(V) beta(3) in a preclinical tumor model. Cancer Biother Radiopharm 23:691–700PubMedCrossRefGoogle Scholar
  8. 8.
    Jeong JM, Hong MK, Chang YS et al (2008) Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 49:830–836PubMedCrossRefGoogle Scholar
  9. 9.
    Li ZB, Chen K, Chen X (2008) (68)Ga-labeled multimeric RGD peptides for microPET imaging of integrin alpha(v)beta (3) expression. Eur J Nucl Med Mol Imaging 35:1100–1108PubMedCrossRefGoogle Scholar
  10. 10.
    Chen X, Park R, Shahinian AH et al (2004) 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 31:179–189PubMedCrossRefGoogle Scholar
  11. 11.
    Chen X, Liu S, Hou Y et al (2004) MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 6:350–359PubMedCrossRefGoogle Scholar
  12. 12.
    Lang L, Li W, Jia HM et al (2011) New methods for labeling RGD peptides with bromine-76. Theranostics 1:341–353PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Jacobson O, Zhu L, Niu G et al (2011) MicroPET imaging of integrin alpha(v)beta (3) expressing tumors using (89)Zr-RGD peptides. Mol Imaging Biol 13(6):1224–1233PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Zhang X, Xiong Z, Wu Y et al (2006) Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 47:113–121PubMedGoogle Scholar
  15. 15.
    Sun X, Yan Y, Liu S et al (2011) 18F-FPPRGD2 and 18F-FDG PET of response to Abraxane therapy. J Nucl Med 52:140–146PubMedCrossRefGoogle Scholar
  16. 16.
    Liu S, Liu Z, Chen K et al (2010) 18F-labeled galacto and PEGylated RGD dimers for PET imaging of alphavbeta3 integrin expression. Mol Imaging Biol 12:530–538PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Chin FT, Shen B, Liu S et al (2012) First experience with clinical-grade [(18)F]FPP(RGD) (2): an automated multi-step radiosynthesis for clinical PET studies. Mol Imaging Biol 14(1):88–95PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Mittra ES, Goris ML, Iagaru AH et al (2011) Pilot pharmacokinetic and dosimetric studies of (18)F-FPPRGD2: a PET radiopharmaceutical agent for imaging alpha(v)beta(3) integrin levels. Radiology 260:182–191PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Lang L, Li W, Guo N et al (2011) Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconjugate chemistry 22:2415–2422PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    McBride WJ, D’Souza CA, Sharkey RM et al (2010) Improved F-18 labeling of peptides with a fluoride-aluminum-chelate complex. Bioconjugate chemistry 21:1331–1340PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    McBride WJ, Sharkey RM, Karacay H et al (2009) A novel method of F-18 radiolabeling for PET. J Nucl Med 50:991–998PubMedCrossRefGoogle Scholar
  22. 22.
    Lang L, Li W, Guo N et al (2011) Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconjugate chemistry 22:2415–2422PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Gao H, Lang L, Guo N et al (2012) PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18F-AlF-NOTA-PRGD2. Eur J Nucl Med Mol Imaging 39:683–692PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Guo N, Lang L, Li W et al (2012) Quantitative analysis and comparison study of [18F]AlF-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 using a reference tissue model. PLoS One 7:e37506PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Haubner R, Wester HJ, Burkhart F et al (2001) Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336PubMedGoogle Scholar
  26. 26.
    Beer AJ, Kessler H, Wester HJ, Schwaiger M (2011) PET imaging of integrin alphaVbeta3 expression. Theranostics 1:48–57PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Shi J, Kim YS, Zhai S, Liu Z, Chen X, Liu S (2009) Improving tumor uptake and pharmacokinetics of (64)Cu-labeled cyclic RGD peptide dimers with Gly(3) and PEG(4) linkers. Bioconjugate chemistry 20:750–759PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Liu Z, Niu G, Shi J, Liu S, Wang F, Chen X (2009) (68)Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin alphavbeta3 PET imaging. Eur J Nucl Med Mol Imaging 36:947–957PubMedCrossRefGoogle Scholar
  29. 29.
    Zhou Y, Shao G, Liu S (2012) Monitoring breast tumor lung metastasis by U-SPECT-II/CT with an integrin alpha(v)beta(3)-targeted radiotracer(99m)Tc-3P-RGD(2). Theranostics 2:577–588PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Shi J, Zhou Y, Chakraborty S et al (2011) Evaluation of in-labeled cyclic RGD peptides: effects of peptide and linker multiplicity on their tumor uptake, excretion kinetics and metabolic stability. Theranostics 1:322–340PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Zhou Y, Chakraborty S, Liu S (2011) Radiolabeled cyclic RGD peptides as radiotracers for imaging tumors and thrombosis by SPECT. Theranostics 1:58–82PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Liu S, Liu H, Ren G, Kimura RH, Cochran JR, Cheng Z (2011) PET imaging of integrin positive tumors using F labeled knottin peptides. Theranostics 1:403–412PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Tomayko MMRC (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24:148–154PubMedCrossRefGoogle Scholar
  34. 34.
    Euhus DMHC, LaRegina MC, Johnson FE (1986) Tumor measurement in the nude mouse. J Surg Oncol 31:229–234PubMedCrossRefGoogle Scholar
  35. 35.
    Kenny LM, Coombes RC, Oulie I et al (2008) Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. Journal of nuclear medicine 49:879–886PubMedCrossRefGoogle Scholar
  36. 36.
    Beer AJ, Haubner R, Goebel M et al (2005) Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. Journal of nuclear medicine 46:1333–1341PubMedGoogle Scholar
  37. 37.
    Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221PubMedCrossRefGoogle Scholar
  38. 38.
    Gagnon MK, Hausner SH, Marik J, Abbey CK, Marshall JF, Sutcliffe JL (2009) High-throughput in vivo screening of targeted molecular imaging agents. Proc Natl Acad Sci U S A 106:17904–17909PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Bass LA, Wang M, Welch MJ, Anderson CJ (2000) In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjugate chemistry 11:527–532PubMedCrossRefGoogle Scholar
  40. 40.
    Deshpande SV, Subramanian R, McCall MJ, DeNardo SJ, DeNardo GL, Meares CF (1990) Metabolism of indium chelates attached to monoclonal antibody: minimal transchelation of indium from benzyl-EDTA chelate in vivo. Journal of nuclear medicine 31:218–224PubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2013

Authors and Affiliations

  • Jinxia Guo
    • 1
    • 2
  • Lixin Lang
    • 2
  • Shuo Hu
    • 3
  • Ning Guo
    • 2
  • Lei Zhu
    • 2
    • 4
  • Zhongchan Sun
    • 2
  • Ying Ma
    • 2
  • Dale O. Kiesewetter
    • 2
  • Gang Niu
    • 2
  • Qingguo Xie
    • 1
  • Xiaoyuan Chen
    • 2
  1. 1.Department of Biomedical Engineering, and Wuhan National Laboratory for Optoelectronics(WNLO)Huazhong University of Science and TechnologyWuhanChina
  2. 2.Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and Bioengineering, National Institutes of HealthBethesdaUSA
  3. 3.Department of Nuclear Medicine, Xiangya HospitalCentral South UniversityChangshaChina
  4. 4.Center for Molecular Imaging and Translational MedicineSchool of Public Health, Xiamen UniversityXiamenChina

Personalised recommendations