Molecular Imaging and Biology

, Volume 16, Issue 1, pp 109–117 | Cite as

PET Imaging of Stroke-Induced Neuroinflammation in Mice Using [18F]PBR06

  • Frederick M. Lartey
  • G-One Ahn
  • Bin Shen
  • Keith-Travis Cord
  • Tenille Smith
  • Joshua Y. Chua
  • Sahar Rosenblum
  • Hongguang Liu
  • Michelle L. James
  • Sophia Chernikova
  • Star W. Lee
  • Laura J. Pisani
  • Rabindra Tirouvanziam
  • John W. Chen
  • Theo D. Palmer
  • Frederick T. Chin
  • Raphael Guzman
  • Edward E. Graves
  • Billy W. LooJr.
Research Article

Abstract

Purpose

The purpose of this study is to evaluate the 18 kDa translocator protein (TSPO) radioligand [18F]N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline ([18F]PBR06) as a positron emission tomography (PET) imaging biomarker of stroke-induced neuroinflammation in a rodent model.

Procedures

Stroke was induced by transient middle cerebral artery occlusion in Balb/c mice. Dynamic PET/CT imaging with displacement and preblocking using PK111195 was performed 3 days later. PET data were correlated with immunohistochemistry (IHC) for the activated microglial markers TSPO and CD68 and with autoradiography.

Results

[18F]PBR06 accumulation peaked within the first 5 min postinjection, then decreased gradually, remaining significantly higher in infarct compared to noninfarct regions. Displacement or preblocking with PK11195 eliminated the difference in [18F]PBR06 uptake between infarct and noninfarct regions. Autoradiography and IHC correlated well spatially with uptake on PET.

Conclusions

[18F]PBR06 PET specifically images TSPO in microglial neuroinflammation in a mouse model of stroke and shows promise for imaging and monitoring microglial activation/neuroinflammation in other disease models.

Key words

Stroke Neuroinflammation Translocator protein 18 kDa (TSPO) Peripheral benzodiazepine receptor (PBR) Positron emission tomography (PET) [18F]PBR06 

References

  1. 1.
    Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Milner R (2009) Microglial expression of alphavbeta3 and alphavbeta5 integrins is regulated by cytokines and the extracellular matrix: beta5 integrin null microglia show no defects in adhesion or MMP-9 expression on vitronectin. Glia 57:714–723PubMedCrossRefGoogle Scholar
  3. 3.
    Coull BM (2007) Inflammation and stroke—introduction. Stroke 38:631–631CrossRefGoogle Scholar
  4. 4.
    Weinstein JR, Koerner IP, Moller T (2010) Microglia in ischemic brain injury. Future Neurol 5:227–246PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Papadopoulos V, Baraldi M, Guilarte TR et al (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27:402–409PubMedCrossRefGoogle Scholar
  6. 6.
    Rupprecht R, Papadopoulos V, Rammes G et al (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9:971–988PubMedCrossRefGoogle Scholar
  7. 7.
    Cagnin A, Kassiou M, Meikle SR, Banati RB (2007) Positron emission tomography imaging of neuroinflammation. Neurotherapeutics 4:443–452PubMedCrossRefGoogle Scholar
  8. 8.
    Fujimura Y, Hwang PM, Trout Iii H et al (2008) Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [(3)H]PK 11195. Atherosclerosis 201:108–111PubMedCrossRefGoogle Scholar
  9. 9.
    Fujimura Y, Ikoma Y, Yasuno F et al (2006) Quantitative analyses of 18F-FEDAA1106 binding to peripheral benzodiazepine receptors in living human brain. J Nucl Med 47:43–50PubMedGoogle Scholar
  10. 10.
    Gerhard A, Neumaier B, Elitok E et al (2000) In vivo imaging of activated microglia using [11C]PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport 11:2957–2960PubMedCrossRefGoogle Scholar
  11. 11.
    James ML, Fulton RR, Henderson DJ et al (2005) Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand. Bioorg Med Chem 13:6188–6194PubMedCrossRefGoogle Scholar
  12. 12.
    Imaizumi M, Kim HJ, Zoghbi SS et al (2007) PET imaging with [11C]PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat. Neurosci Lett 411:200–205PubMedCrossRefGoogle Scholar
  13. 13.
    James ML, Fulton RR, Vercoullie J et al (2008) DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med 49:814–822PubMedCrossRefGoogle Scholar
  14. 14.
    Yui J, Maeda J, Kumata K et al (2010) 18F-FEAC and 18F-FEDAC: PET of the monkey brain and imaging of translocator protein (18 kDa) in the infarcted rat brain. J Nucl Med 51:1301–1309PubMedCrossRefGoogle Scholar
  15. 15.
    Yui J, Hatori A, Kawamura K et al (2011) Visualization of early infarction in rat brain after ischemia using a translocator protein (18 kDa) PET ligand [11C]DAC with ultra-high specific activity. Neuroimage 54:123–130PubMedCrossRefGoogle Scholar
  16. 16.
    Ikoma Y, Yasuno F, Ito H et al (2007) Quantitative analysis for estimating binding potential of the peripheral benzodiazepine receptor with [11C]DAA1106. J Cereb Blood Flow Metab 27:173–184PubMedCrossRefGoogle Scholar
  17. 17.
    Briard E, Zoghbi SS, Simeon FG et al (2009) Single-step high-yield radiosynthesis and evaluation of a sensitive 18F-labeled ligand for imaging brain peripheral benzodiazepine receptors with PET. J Med Chem 52:688–699PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Fujimura Y, Zoghbi SS, Simeon FG et al (2009) Quantification of translocator protein (18 kDa) in the human brain with PET and a novel radioligand, (18)F-PBR06. J Nucl Med 50:1047–1053PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Fujimura Y, Kimura Y, Simeon FG et al (2010) Biodistribution and radiation dosimetry in humans of a new PET ligand, 18F-PBR06, to image translocator protein (18 kDa). J Nucl Med 51:145–149PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Mao Y, Yang GY, Zhou LF, Stern JD, Betz AL (1999) Focal cerebral ischemia in the mouse: description of a model and effects of permanent and temporary occlusion. Brain Res Mol Brain Res 63:366–370PubMedCrossRefGoogle Scholar
  21. 21.
    Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609PubMedCrossRefGoogle Scholar
  22. 22.
    Habte F RG, Doyle T, Cheng Z, Gambhir S, Paik D (2011) High-throughput multiple mice imaging on microPET and microPET-CT scanners: evaluation on image quantitation effect. World Molecular Imaging Congress, San DiegoGoogle Scholar
  23. 23.
    Graves EE, Quon A, Loo BW Jr (2007) RT_Image: an open-source tool for investigating PET in radiation oncology. Technol Cancer Res Treat 6:111–121PubMedGoogle Scholar
  24. 24.
    Ji B, Maeda J, Sawada M et al (2008) Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies. J Neurosci 28:12255–12267PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Martin A, Boisgard R, Theze B et al (2010) Evaluation of the PBR/TSPO radioligand [18F]DPA-714 in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab 30:230–241PubMedCrossRefGoogle Scholar
  26. 26.
    Rojas S, Martin A, Arranz MJ et al (2007) Imaging brain inflammation with [11C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J Cereb Blood Flow Metab 27:1975–1986PubMedCrossRefGoogle Scholar
  27. 27.
    Boutin H, Chauveau F, Thominiaux C et al (2007) 11C-DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med 48:573–581PubMedCrossRefGoogle Scholar
  28. 28.
    Vogel J, Hermes A, Kuschinsky W (1999) Evolution of microcirculatory disturbances after permanent middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 19:1322–1328PubMedCrossRefGoogle Scholar
  29. 29.
    Van Camp N, Boisgard R, Kuhnast B et al (2010) In vivo imaging of neuroinflammation: a comparative study between [18F]PBR111, [11C]CLINME and [11C]PK11195 in an acute rodent model. Eur J Nucl Med Mol Imaging 37:962–972PubMedCrossRefGoogle Scholar
  30. 30.
    Dolle F, Luus C, Reynolds A, Kassiou M (2009) Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography. Curr Med Chem 16:2899–2923PubMedCrossRefGoogle Scholar
  31. 31.
    Maeda J, Higuchi M, Inaji M et al (2007) Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res 1157:100–111PubMedCrossRefGoogle Scholar
  32. 32.
    Breckwoldt MO, Chen JW, Stangenberg L et al (2008) Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci U S A 105:18584–18589PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2013

Authors and Affiliations

  • Frederick M. Lartey
    • 1
  • G-One Ahn
    • 1
    • 6
  • Bin Shen
    • 3
  • Keith-Travis Cord
    • 1
  • Tenille Smith
    • 4
    • 9
  • Joshua Y. Chua
    • 4
  • Sahar Rosenblum
    • 4
    • 9
  • Hongguang Liu
    • 3
  • Michelle L. James
    • 3
  • Sophia Chernikova
    • 1
  • Star W. Lee
    • 1
    • 4
    • 8
  • Laura J. Pisani
    • 3
  • Rabindra Tirouvanziam
    • 5
    • 10
  • John W. Chen
    • 7
  • Theo D. Palmer
    • 11
  • Frederick T. Chin
    • 3
  • Raphael Guzman
    • 4
    • 9
  • Edward E. Graves
    • 1
    • 2
  • Billy W. LooJr.
    • 1
    • 2
  1. 1.Department of Radiation OncologyStanford University School of MedicineStanfordUSA
  2. 2.Stanford Cancer InstituteStanfordUSA
  3. 3.Department of RadiologyStanford University School of MedicineStanfordUSA
  4. 4.Department of NeurosurgeryStanford University School of MedicineStanfordUSA
  5. 5.Department of PediatricsStanford University School of MedicineStanfordUSA
  6. 6.Integrative Biosciences & BiotechnologyPohang University of Science & TechnologyKyungbukKorea
  7. 7.Center for Systems Biology and Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  8. 8.Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaUSA
  9. 9.Departments of Neurosurgery and BiomedicineUniversity of BaselBaselSwitzerland
  10. 10.Department of Pediatrics, Emory + Children’s Center for CF ResearchEmory University School of MedicineAtlantaUSA
  11. 11.Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordUSA

Personalised recommendations