Advertisement

Molecular Imaging and Biology

, Volume 15, Issue 6, pp 655–665 | Cite as

Respiratory-Induced Errors in Tumor Quantification and Delineation in CT Attenuation-Corrected PET Images: Effects of Tumor Size, Tumor Location, and Respiratory Trace: A Simulation Study Using the 4D XCAT Phantom

  • Parham Geramifar
  • Mojtaba Shamsaie Zafarghandi
  • Pardis Ghafarian
  • Arman Rahmim
  • Mohammad Reza AyEmail author
Research Article

Abstract

Purpose

We investigated the magnitude of respiratory-induced errors in tumor maximum standardized uptake value (SUVmax), localization, and volume for different respiratory motion traces and various lesion sizes in different locations of the thorax and abdomen in positron emission tomography (PET) images.

Procedures

Respiratory motion traces were simulated based on the common patient breathing cycle and three diaphragm motions used to drive the 4D XCAT phantom. Lesions with different diameters were simulated in different locations of lungs and liver. The generated PET sinograms were subsequently corrected using computed tomography attenuation correction involving the end exhalation, end inhalation, and average of the respiratory cycle. By considering respiration-averaged computed tomography as a true value, the lesion volume, displacement, and SUVmax were measured and analyzed for different respiratory motions.

Results

Respiration with 35-mm diaphragm motion results in a mean lesion SUVmax error of 24 %, a mean superior inferior displacement of 7.6 mm and a mean lesion volume overestimation of 129 % for a 9-mm lesion in the liver. Respiratory motion results in lesion volume overestimation of 50 % for a 9-mm lower lung lesion near the liver with just 15-mm diaphragm motion. Although there are larger errors in lesion SUVmax and volume for 35-mm motion amplitudes, respiration-averaged computed tomography results in smaller errors than the other two phases, except for the lower lung region.

Conclusions

The respiratory motion-induced errors in tumor quantification and delineation are highly dependent upon the motion amplitude, tumor location, tumor size, and choice of the attenuation map for PET image attenuation correction.

Key words

Respiratory motion artifact PET/CT Tumor quantification SUV CTAC 

Notes

Acknowledgments

We thank Dr. William Paul Segars for providing the XCAT phantom.

Conflict of Interest

None

References

  1. 1.
    Abella M, Alessio AM, Mankoff DA et al (2012) Accuracy of CT-based attenuation correction in PET/CT bone imaging. Phys Med Biol 57:2477–2490PubMedCrossRefGoogle Scholar
  2. 2.
    Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33:166–179PubMedCrossRefGoogle Scholar
  3. 3.
    Kinahan PE, Townsend DW, Beyer T, Sashin D (1998) Attenuation correction for a combined 3D PET/CT scanner. Medical physics 25:2046–2053PubMedCrossRefGoogle Scholar
  4. 4.
    Ay MR, Mehranian A, Abdoli M et al (2011) Qualitative and quantitative assessment of metal artifacts arising from implantable cardiac pacing devices in oncological PET/CT studies: a phantom study. Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging 13:1077–1087CrossRefGoogle Scholar
  5. 5.
    Ay MR, Shirmohammad M, Sarkar S et al (2011) Comparative assessment of energy-mapping approaches in CT-based attenuation correction for PET. Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging 13:187–198CrossRefGoogle Scholar
  6. 6.
    Ay MR, Zaidi H (2006) Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET. Eur J Nucl Med Mol Imaging 33:1301–1313PubMedCrossRefGoogle Scholar
  7. 7.
    Erdi YE, Nehmeh SA, Pan T et al (2004) The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 45:1287–1292Google Scholar
  8. 8.
    Nehmeh SA, Erdi YE (2008) Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 38:167–176PubMedCrossRefGoogle Scholar
  9. 9.
    Thorndyke B, Schreibmann E, Koong A, Xing L (2006) Reducing respiratory motion artifacts in positron emission tomography through retrospective stacking. Med Phys 33:2632–2641PubMedCrossRefGoogle Scholar
  10. 10.
    Goerres GW, Burger C, Kamel E et al (2003) Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology 226:906–910PubMedCrossRefGoogle Scholar
  11. 11.
    Kamel E, Hany TF, Burger C et al (2002) CT vs 68Ge attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current. Eur J Nucl Med Mol Imaging 29:346–350PubMedCrossRefGoogle Scholar
  12. 12.
    Nakamoto Y, Chang AE, Zasadny KR, Wahl RL (2002) Comparison of attenuation-corrected and non-corrected FDG-PET images for axillary nodal staging in newly diagnosed breast cancer. Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging 4:161–169CrossRefGoogle Scholar
  13. 13.
    Nakamoto Y, Tatsumi M, Cohade C et al (2003) Accuracy of image fusion of normal upper abdominal organs visualized with PET/CT. Eur J Nucl Med Mol Imaging 30:597–602PubMedCrossRefGoogle Scholar
  14. 14.
    Osman MM, Cohade C, Nakamoto Y et al (2003) Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 44:240–243Google Scholar
  15. 15.
    Osman MM, Cohade C, Nakamoto Y, Wahl RL (2003) Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging 30:603–606PubMedCrossRefGoogle Scholar
  16. 16.
    Beyer T, Antoch G, Blodgett T et al (2003) Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 30:588–596PubMedCrossRefGoogle Scholar
  17. 17.
    Boucher L, Rodrigue S, Lecomte R, Benard F (2004) Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 45:214–219Google Scholar
  18. 18.
    Cohade C, Wahl RL (2003) Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography—clinical use, interpretation methods, diagnostic improvements. Semin Nucl Med 33:228–237PubMedCrossRefGoogle Scholar
  19. 19.
    Goerres GW, Kamel E, Heidelberg TN et al (2002) PET-CT image co-registration in the thorax: influence of respiration. Eur J Nucl Med Mol Imaging 29:351–360PubMedCrossRefGoogle Scholar
  20. 20.
    Goerres GW, Kamel E, Seifert B et al (2002) Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 43:1469–1475Google Scholar
  21. 21.
    Pan T, Mawlawi O, Nehmeh SA et al (2005) Attenuation correction of PET images with respiration-averaged CT images in PET/CT. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 46:1481–1487Google Scholar
  22. 22.
    Beyer T, Rosenbaum S, Veit P et al (2005) Respiration artifacts in whole-body (18)F-FDG PET/CT studies with combined PET/CT tomographs employing spiral CT technology with 1 to 16 detector rows. Eur J Nucl Med Mol Imaging 32:1429–1439PubMedCrossRefGoogle Scholar
  23. 23.
    Segars WP, Mori S, Chen GTY, Tsui BMW (2007) Modeling respiratory motion variations in the 4D NCAT phantom [abstract]. 4: 2677-2679P.Google Scholar
  24. 24.
    Sarikaya I, Yeung HW, Erdi Y, Larson SM (2003) Respiratory artefact causing malpositioning of liver dome lesion in right lower lung. Clin Nucl Med 28:943–944PubMedCrossRefGoogle Scholar
  25. 25.
    Nehmeh SA, Erdi YE, Ling CC et al (2002) Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Medical physics 29:366–371PubMedCrossRefGoogle Scholar
  26. 26.
    Park SJ, Ionascu D, Killoran J et al (2008) Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images. Phys Med Biol 53:3661–3679PubMedCrossRefGoogle Scholar
  27. 27.
    Pevsner A, Nehmeh SA, Humm JL et al (2005) Effect of motion on tracer activity determination in CT attenuation corrected PET images: a lung phantom study. Medical physics 32:2358–2362PubMedCrossRefGoogle Scholar
  28. 28.
    Papathanassiou D, Becker S, Amir R et al (2005) Respiratory motion artefact in the liver dome on FDG PET/CT: comparison of attenuation correction with CT and a caesium external source. Eur J Nucl Med Mol Imaging 32:1422–1428PubMedCrossRefGoogle Scholar
  29. 29.
    Papathanassiou D, Liehn JC, Bourgeot B et al (2005) Cesium attenuation correction of the liver dome revealing hepatic lesion missed with computed tomography attenuation correction because of the respiratory motion artifact. Clin Nucl Med 30:120–121PubMedCrossRefGoogle Scholar
  30. 30.
    Beyer T, Antoch G, Muller S et al (2004) Acquisition protocol considerations for combined PET/CT imaging. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 45(Suppl 1):25S–35SGoogle Scholar
  31. 31.
    Bockisch A, Beyer T, Antoch G et al (2004) Positron emission tomography/computed tomography—imaging protocols, artifacts, and pitfalls. Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging 6:188–199CrossRefGoogle Scholar
  32. 32.
    Cook GJ, Wegner EA, Fogelman I (2004) Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging. Semin Nucl Med 34:122–133PubMedCrossRefGoogle Scholar
  33. 33.
    Delbeke D, Coleman RE, Guiberteau MJ et al (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 47:885–895Google Scholar
  34. 34.
    Zaidi H, Xu XG (2007) Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in radiological sciences. Annu Rev Biomed Eng 9:471–500PubMedCrossRefGoogle Scholar
  35. 35.
    Geramifar P, Ay MR, Shamsaie Zafarghandi M et al (2011) Investigation of time-of-flight benefits in an LYSO-based PET/CT scanner: a Monte Carlo study using GATE. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 641:121–127CrossRefGoogle Scholar
  36. 36.
    Geramifar P, Ay MR, Shamsaie M et al (2009) Performance comparison of four commercial GE Discovery PET/CT scanners: a Monte Carlo study using GATE. Iran J Nucl Med 17:26–33Google Scholar
  37. 37.
    Tylski P, Stute S, Grotus N et al (2010) Comparative assessment of methods for estimating tumor volume and standardized uptake value in (18)F-FDG PET. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 51:268–276Google Scholar
  38. 38.
    Barret O, Carpenter TA, Clark JC et al (2005) Monte Carlo simulation and scatter correction of the GE advance PET scanner with SimSET and Geant4. Phys Med Biol 50:4823–4840PubMedCrossRefGoogle Scholar
  39. 39.
    Zeraatkar N, Ay MR, Ghafarian P et al (2011) Monte Carlo-based evaluation of inter-crystal scatter and penetration in the PET subsystem of three GE Discovery PET/CT scanners. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 659:508–514CrossRefGoogle Scholar
  40. 40.
    Zeraatkar N, Ay MR, Kamali-Asl AR, Zaidi H (2011) Accurate Monte Carlo modeling and performance assessment of the X-PET subsystem of the FLEX triumph preclinical PET/CT scanner. Medical physics 38:1217–1225PubMedCrossRefGoogle Scholar
  41. 41.
    Segars WP, Sturgeon G, Mendonca S et al (2010) 4D XCAT phantom for multimodality imaging research. Medical physics 37:4902–4915PubMedCrossRefGoogle Scholar
  42. 42.
    Zubal G, Gindi G, Lee M, et al. (1990) High resolution anthropomorphic phantom for Monte Carlo analysis of internal radiation sources [abstract]. 540-547P.Google Scholar
  43. 43.
    Zaidi H, Tsui BM (2009) Review of computational anthropomorphic anatomical and physiological models. Proc IEEE 97:1938–1953CrossRefGoogle Scholar
  44. 44.
    Ramos CD, Erdi YE, Gonen M et al (2001) FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection. European journal of nuclear medicine 28:155–164PubMedCrossRefGoogle Scholar
  45. 45.
    Zincirkeser S, Sahin E, Halac M, Sager S (2007) Standardized uptake values of normal organs on 18F-fluorodeoxyglucose positron emission tomography and computed tomography imaging. The Journal of international medical research 35:231–236PubMedCrossRefGoogle Scholar
  46. 46.
    Alberts WM, American College of Chest P (2007) Diagnosis and management of lung cancer executive summary: ACCP evidence-based clinical practice guidelines (2nd Edition). Chest 132:1S–19SCrossRefGoogle Scholar
  47. 47.
    Rivera MP, Detterbeck F, Mehta AC, American College of Chest P (2003) Diagnosis of lung cancer: the guidelines. Chest 123:129S–136SCrossRefGoogle Scholar
  48. 48.
    Lamare F, Cresson T, Savean J et al (2007) Respiratory motion correction for PET oncology applications using affine transformation of list mode data. Phys Med Biol 52:121–140PubMedCrossRefGoogle Scholar
  49. 49.
    Liu C, Pierce LA 2nd, Alessio AM, Kinahan PE (2009) The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys Med Biol 54:7345–7362PubMedCrossRefGoogle Scholar
  50. 50.
    Nehmeh SA, El-Zeftawy H, Greco C et al (2009) An iterative technique to segment PET lesions using a Monte Carlo based mathematical model. Medical physics 36:4803–4809PubMedCrossRefGoogle Scholar
  51. 51.
    Wade OL (1954) Movements of the thoracic cage and diaphragm in respiration. J Physiol 124:193–212PubMedGoogle Scholar
  52. 52.
    Kantarci F, Mihmanli I, Demirel MK et al (2004) Normal diaphragmatic motion and the effects of body composition: determination with M-mode sonography. Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine 23:255–260Google Scholar
  53. 53.
    Kolar P, Neuwirth J, Sanda J et al (2009) Analysis of diaphragm movement during tidal breathing and during its activation while breath holding using MRI synchronized with spirometry. Physiological research/Academia Scientiarum Bohemoslovaca 58:383–392PubMedGoogle Scholar
  54. 54.
    Thielemans K, Tsoumpas C, Mustafovic S et al (2012) STIR: software for tomographic image reconstruction release 2. Phys Med Biol 57:867–883PubMedCrossRefGoogle Scholar
  55. 55.
    Han D, Yu J, Yu Y et al (2010) Comparison of (18)F-fluorothymidine and (18)F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys 76:1235–1241PubMedCrossRefGoogle Scholar
  56. 56.
    Wang YC, Hsieh TC, Yu CY et al (2012) The clinical application of 4D 18F-FDG PET/CT on gross tumor volume delineation for radiotherapy planning in esophageal squamous cell cancer. J Radiat Res 53:594–600PubMedCrossRefGoogle Scholar
  57. 57.
    Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 48:932–945Google Scholar
  58. 58.
    Rousset O, Rahmim A, Alavi A, Zaidi H (2007) Partial volume correction strategies in PET. PET clinics 2:235–249CrossRefGoogle Scholar
  59. 59.
    van Velden FH, Kloet RW, van Berckel BN et al (2009) HRRT versus HR+ human brain PET studies: an interscanner test–retest study. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 50:693–702Google Scholar

Copyright information

© World Molecular Imaging Society 2013

Authors and Affiliations

  • Parham Geramifar
    • 1
  • Mojtaba Shamsaie Zafarghandi
    • 1
  • Pardis Ghafarian
    • 2
    • 3
  • Arman Rahmim
    • 4
  • Mohammad Reza Ay
    • 5
    • 6
    • 7
    Email author
  1. 1.Faculty of Nuclear Engineering and PhysicsAmirkabir University of TechnologyTehranIran
  2. 2.Chronic Respiratory Disease Research Center, NRITLD, Masih Daneshvari HospitalShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Telemedicine Research Center, NRITLD, Masih Daneshvari HospitalShahid Beheshti University of Medical SciencesTehranIran
  4. 4.Department of RadiologyJohns Hopkins UniversityBaltimoreUSA
  5. 5.Medical Imaging Group, Research Center for Molecular and Cellular ImagingTehran University of Medical SciencesTehranIran
  6. 6.Research Center for Nuclear MedicineTehran University of Medical SciencesTehranIran
  7. 7.Department of Medical Physics and Biomedical EngineeringTehran University of Medical SciencesTehranIran

Personalised recommendations