Skip to main content

Advertisement

Log in

Development of an Oxygen-Sensitive Degradable Peptide Probe for the Imaging of Hypoxia-Inducible Factor-1-Active Regions in Tumors

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to develop a radiolabeled peptide probe for the imaging of hypoxia-inducible factor-1 (HIF-1)-active tumors.

Procedures

We synthesized the peptide probes that contain or lack an essential sequence of the oxygen-dependent degradation of HIF-1α in proteasomes (123/125I-DKOP30 or 125I-mDKOP, respectively). The degradation of probes was evaluated in vitro using cell lysates containing proteasomes. In vivo biodistribution study, planar imaging, autoradiography, and comparison between probe accumulation and HIF-1 transcriptional activity were also performed.

Results

The 125I-DKOP30 underwent degradation in a proteasome-dependent manner, while 125I-mDKOP was not degraded. Biodistribution analysis showed 125I-DKOP30 accumulation in tumors. The tumors were clearly visualized by in vivo imaging, and intratumoral distribution of 125I-DKOP30 coincided with the HIF-1α-positive hypoxic regions. Tumoral accumulation of 125I-DKOP30 was significantly correlated with HIF-1-dependent luciferase bioluminescence, while that of 125I-mDKOP was not.

Conclusion

123I-DKOP30 is a useful peptide probe for the imaging of HIF-1-active tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harada H (2011) How can we overcome tumor hypoxia in radiation therapy? J Radiat Res 52:545–556

    Article  PubMed  CAS  Google Scholar 

  2. Ogawa K, Chiba I, Morioka T et al (2011) Clinical significance of HIF-1alpha expression in patients with esophageal cancer treated with concurrent chemoradiotherapy. Anticancer Res 31:2351–2359

    PubMed  CAS  Google Scholar 

  3. Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 14:191–201

    Article  PubMed  CAS  Google Scholar 

  4. Keith B, Johnson RS, Simon MC (2012) HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12:9–22

    CAS  Google Scholar 

  5. Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16:5928–5935

    Article  PubMed  CAS  Google Scholar 

  6. Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med 365:537–547

    Article  PubMed  CAS  Google Scholar 

  7. Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214

    Article  PubMed  CAS  Google Scholar 

  8. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408

    Article  PubMed  CAS  Google Scholar 

  9. Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271:C1172–C1180

    PubMed  CAS  Google Scholar 

  10. Stroka DM, Burkhardt T, Desbaillets I et al (2001) HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J 15:2445–2453

    PubMed  CAS  Google Scholar 

  11. Brahimi-Horn MC, Pouyssegur J (2007) Oxygen, a source of life and stress. FEBS Lett 581:3582–3591

    Article  PubMed  CAS  Google Scholar 

  12. Kizaka-Kondoh S, Tanaka S, Harada H, Hiraoka M (2009) The HIF-1-active microenvironment: an environmental target for cancer therapy. Adv Drug Deliv Rev 61:623–632

    Article  PubMed  CAS  Google Scholar 

  13. Kudo T, Ueda M, Kuge Y et al (2009) Imaging of HIF-1-active tumor hypoxia using a protein effectively delivered to and specifically stabilized in HIF-1-active tumor cells. J Nucl Med 50:942–949

    Article  PubMed  Google Scholar 

  14. Ueda M, Kudo T, Mutou Y et al (2011) Evaluation of [125I]IPOS as a molecular imaging probe for hypoxia-inducible factor-1-active regions in a tumor: comparison among single-photon emission computed tomography/X-ray computed tomography imaging, autoradiography, and immunohistochemistry. Cancer Sci 102:2090–2096

    Article  PubMed  CAS  Google Scholar 

  15. Fujii H, Yamaguchi M, Inoue K et al (2012) In vivo visualization of heterogeneous intratumoral distribution of hypoxia-inducible factor-1alpha activity by the fusion of high-resolution SPECT and morphological imaging tests. J Biomed Biotechnol 2012:262741

    Article  PubMed  Google Scholar 

  16. Ueda M (2012) Development of a method for high-contrasted nuclear medical imaging of hypoxia-inducible factor-1-active tumor by using a pretargeting approach. Yakugaku Zasshi 132:595–600

    Article  PubMed  CAS  Google Scholar 

  17. Khawli LA, van den Abbeele AD, Kassis AI (1992) N-(m-[125I]iodophenyl)maleimide: an agent for high yield radiolabeling of antibodies. Int J Rad Appl Instrum B 19:289–295

    Article  PubMed  CAS  Google Scholar 

  18. Driscoll J, Goldberg AL (1990) The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. J Biol Chem 265:4789–4792

    PubMed  CAS  Google Scholar 

  19. Kuchimaru T, Kadonosono T, Tanaka S et al (2010) In vivo imaging of HIF-active tumors by an oxygen-dependent degradation protein probe with an interchangeable labeling system. PLoS One 5:e15736

    Article  PubMed  CAS  Google Scholar 

  20. Ueda M, Kudo T, Kuge Y et al (2010) Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1alpha. Eur J Nucl Med Mol Imaging 37:1566–1574

    Article  PubMed  CAS  Google Scholar 

  21. Kudo T, Ueda M, Konishi H et al (2011) PET imaging of hypoxia-inducible factor-1-active tumor cells with pretargeted oxygen-dependent degradable streptavidin and a novel 18F-labeled biotin derivative. Mol Imaging Biol 13:1003–1010

    Article  PubMed  Google Scholar 

  22. Baudelet C, Gallez B (2004) Effect of anesthesia on the signal intensity in tumors using BOLD-MRI: comparison with flow measurements by laser Doppler flowmetry and oxygen measurements by luminescence-based probes. Magn Reson Imaging 22:905–912

    Article  PubMed  CAS  Google Scholar 

  23. Semenza GL (2001) HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107:1–3

    Article  PubMed  CAS  Google Scholar 

  24. Jaakkola P, Mole DR, Tian YM et al (2001) Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  PubMed  CAS  Google Scholar 

  25. Paltoglou S, Roberts BJ (2007) HIF-1alpha and EPAS ubiquitination mediated by the VHL tumour suppressor involves flexibility in the ubiquitination mechanism, similar to other RING E3 ligases. Oncogene 26:604–609

    Article  PubMed  CAS  Google Scholar 

  26. Harada H, Hiraoka M, Kizaka-Kondoh S (2002) Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res 62:2013–2018

    PubMed  CAS  Google Scholar 

  27. Nakase I, Konishi Y, Ueda M, Saji H, Futaki S (2012) Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J Control Release 159:181–188

    Article  PubMed  CAS  Google Scholar 

  28. Dales JP, Garcia S, Meunier-Carpentier S et al (2005) Overexpression of hypoxia-inducible factor HIF-1alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients. Int J Cancer 116:734–739

    Article  PubMed  CAS  Google Scholar 

  29. Park S, Ha SY, Cho HY et al (2011) Prognostic implications of hypoxia-inducible factor-1alpha in epidermal growth factor receptor-negative non-small cell lung cancer. Lung Cancer 72:100–107

    Article  PubMed  Google Scholar 

  30. Eckert AW, Lautner MH, Schutze A et al (2011) Coexpression of hypoxia-inducible factor-1alpha and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology 58:1136–1147

    Article  PubMed  Google Scholar 

  31. Kersemans V, Kersemans K, Cornelissen B (2008) Cell penetrating peptides for in vivo molecular imaging applications. Curr Pharm Des 14:2415–2447

    Article  PubMed  CAS  Google Scholar 

  32. Koh MY, Powis G (2012) Passing the baton: the HIF switch. Trends Biochem Sci 37:364–372

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nihon Medi-Physics Co. Ltd. for providing ammonium [123I]iodide. This work was supported in part by the Research and Development Project on Molecular Probes for Detection of Biological Features on Cancer of the New Energy and Industrial Technology Development Organization (NEDO), Japan, and a Grant-in-Aid for Young Scientists (B) (KAKENHI Grant Number 23791412) from the Japan Society for the Promotion of Science.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Saji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, M., Ogawa, K., Miyano, A. et al. Development of an Oxygen-Sensitive Degradable Peptide Probe for the Imaging of Hypoxia-Inducible Factor-1-Active Regions in Tumors. Mol Imaging Biol 15, 713–721 (2013). https://doi.org/10.1007/s11307-013-0647-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0647-6

Key words

Navigation