Advertisement

Molecular Imaging and Biology

, Volume 15, Issue 6, pp 739–747 | Cite as

Evaluation of [18F]-CP18 as a PET Imaging Tracer for Apoptosis

  • Helen Su
  • Gang Chen
  • Umesh Gangadharmath
  • Luis F. Gomez
  • Qianwa Liang
  • Fanrong Mu
  • Vani P. Mocharla
  • A Katrin Szardenings
  • Joseph C. Walsh
  • Chun-Fang Xia
  • Chul Yu
  • Hartmuth C. Kolb
Research Article

Abstract

Purpose

We identified and validated [18F]-CP18, a DEVD (the caspase 3 substrate recognition motif) containing substrate-based compound as an imaging tracer for caspase-3 activity in apoptotic cells.

Procedures

CP18 was radiolabeled with fluorine-18 using click chemistry. The affinity and selectivity of CP18 for caspase-3 were evaluated in vitro. The biodistribution and metabolism pattern of [18F]-CP18 were assessed in vivo. [18F]-CP18 positron emission tomography (PET) scans were performed in a dexamethasone-induced thymic apoptosis mouse model. After imaging, the mice were sacrificed, and individual organs were collected, measured in a gamma counter, and tested for caspase-3 activity.

Results

In vitro enzymatic caspase-3 assay demonstrated specific cleavage of CP18. In vivo, [18F]-CP18 is predominantly cleared through the kidneys and urine, and is rapidly eliminated from the bloodstream. There was a sixfold increase in caspase activity and a fourfold increase of [18F]-CP18 retention in the dexamethasone-induced thymus of treated versus control mice.

Conclusions

We report the use [18F]-CP18 as a PET tracer for imaging apoptosis. Our data support further development of this tracer for clinical PET applications.

Key words

Apoptosis Molecular imaging PET Caspase 

Notes

Acknowledgments

We thank Dr. Kai Chen for contributing to the design of CP18. We thank James Secrest and Janna Arteaga for facilitating the animal experiments.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11307_2013_644_MOESM1_ESM.pdf (711 kb)
ESM 1 (PDF 710 kb)

References

  1. 1.
    Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354PubMedCrossRefGoogle Scholar
  2. 2.
    Thompson C (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462PubMedCrossRefGoogle Scholar
  3. 3.
    Rimon G, Bazenet CE, Philpott KL, Rubin LL (1997) Increased surface phosphatidylserine is an early marker of neuronal apoptosis. J Neurosci Res 48:563–570PubMedCrossRefGoogle Scholar
  4. 4.
    Olivetti G, Abbi R, Quaini F et al (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141PubMedCrossRefGoogle Scholar
  5. 5.
    Krams SM, Martinez OM (1998) Apoptosis as a mechanism of tissue injury in liver allograft rejection. Semin Liver Dis 18:153–167PubMedCrossRefGoogle Scholar
  6. 6.
    Darzynkiewicz Z (1995) Apoptosis in antitumor strategies: modulation of cell cycle or differentiation. J Cell Biochem 58:151–159PubMedCrossRefGoogle Scholar
  7. 7.
    Blankenberg FG, Katsikis PD, Tait JF et al (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci U S A 95:6349–6354PubMedCrossRefGoogle Scholar
  8. 8.
    Lahorte CMM, Vanderheyden J, Steinmetz N et al (2004) Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med Mo Imaging 31:887–919CrossRefGoogle Scholar
  9. 9.
    Kemerink GJ, Liu X, Kieffer D et al (2003) Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J Nucl Med 44:947–952PubMedGoogle Scholar
  10. 10.
    Grütter MG (2000) Caspases: key players in programmed cell death. Curr Opin Struct Biol 10:649–655PubMedCrossRefGoogle Scholar
  11. 11.
    Shi Y (2004) Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci 13:1979–1987PubMedCrossRefGoogle Scholar
  12. 12.
    Blankengerg FG, Norfray JF (2011) Multimodality molecular imaging of apoptosis in oncology. AJR Am J Roentgenol 197:308–317CrossRefGoogle Scholar
  13. 13.
    Kim K, Lee M, Park H et al (2006) Cell-permeable and biocompatible polymeric nanoparticles for apoptosis imaging. J Am Chem Soc 128:3490–3491PubMedCrossRefGoogle Scholar
  14. 14.
    Chu W, Zhang J, Zeng C et al (2005) N-benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: synthesis, in vitro activity, and molecular modeling studies. J Med Chem 48:7637–7647PubMedCrossRefGoogle Scholar
  15. 15.
    Zhou D, Chu W, Chen DL et al (2009) [18F]- and [11C]-labeled N-benzyl-isatin sulfonamide analogues as PET tracers for apoptosis: synthesis, radiolabeling mechanism, and in vivo imaging study of apoptosis in Fas-treated mice using [11C]WC-98. Org Biomol Chem 7:1337–1348PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou D, Chu W, Rothfuss J et al (2006) Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorganic & Medicinal Chemistry Letters 16:5041–5046CrossRefGoogle Scholar
  17. 17.
    Nguyen Q, Smith G, Glaser M et al (2009) Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide. Proc Natl Acad Sci U S A 106:16375–16380PubMedCrossRefGoogle Scholar
  18. 18.
    Nguyen Q, Challapalli A, Smith G et al (2012) Imaging apoptosis with positron emission tomography: "Bench to bedside" development if the caspase 3/7 specific [18F] ICMT-11. Eur J Cancer 48:432–440PubMedCrossRefGoogle Scholar
  19. 19.
    Thornberry NA, Rano TA, Peterson EP et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911PubMedCrossRefGoogle Scholar
  20. 20.
    Dutot L, Lécorché P, Burlina F et al (2010) Glycosylated cell-penetrating peptides and their conjugates to a proapoptotic peptide: preparation by click chemistry and cell viability studies. J Chem Biol 3:51–65CrossRefGoogle Scholar
  21. 21.
    Nguyen J, Xie X, Neu M et al (2008) Effects of cell-penetrating peptides and pegylation on transfection efficiency of polyethylenimine in mouse lungs. J Gene Med 10:1236–1246PubMedCrossRefGoogle Scholar
  22. 22.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021CrossRefGoogle Scholar
  23. 23.
    Rostovtsev VV, Green LG, Fokin VV et al (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599CrossRefGoogle Scholar
  24. 24.
    Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1–3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064PubMedCrossRefGoogle Scholar
  25. 25.
    Cifone MG, Migliorati G, Parroni R et al (1999) Dexamethasone-induced thymocyte apoptosis: apoptotic signal involves the sequential activation of phosphoinositide-specific phospholipase C, acidic sphingomyelinase, and caspases. Blood 93:2282–2296PubMedGoogle Scholar
  26. 26.
    Chmielewski V, Drupt F, Morfin R (2000) Dexamethasone-induced apoptosis of mouse thymocytes: prevention by native 7alpha-hydroxysteroids. Immunol Cell Biol 78:238–246PubMedCrossRefGoogle Scholar
  27. 27.
    Faust A, Hermann S, Wagner S et al (2009) Molecular imaging of apoptosis in vivo with scintigraphic and optical biomarkers—a status report. Anti-Cancer Agents in Med Chemistry 9:968–985CrossRefGoogle Scholar
  28. 28.
    Zhao M, Zhu X, Ji S et al (2006) 99mTc-labeled C2A domain of synaptotagmin I as a target-specific molecular probe for noninvasive imaging of acute myocardial infarction. J Nuc Med 47:1367–1374Google Scholar
  29. 29.
    Zhao M, Li Z, Bugenhagen (2008) 99m Tc-Labeled duramycin as a novel phosphatidylethanolamine-binding molecular probe. J Nuc Med 49:1345–1352CrossRefGoogle Scholar
  30. 30.
    Damianovich M, Ziv I, Heyman SN et al (2006) ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis. Eur J Nucl Med Mol Imaging 33:281–291PubMedCrossRefGoogle Scholar
  31. 31.
    Hoglund J, Shirvan A, Antoni G et al (2011) 18F -ML-10, a PET tracer for apoptosis: first human study. J Nucl Med 52:720–725PubMedCrossRefGoogle Scholar
  32. 32.
    Edginton LE, Berger AB, Blum G et al (2009) Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 15:967–973CrossRefGoogle Scholar
  33. 33.
    Niers JM, Kerami M, Pike L et al (2011) Multimodal in vivo imaging and blood monitoring of intrinsic and extrinsic apoptosis. Mol Ther 19:1090–1096PubMedCrossRefGoogle Scholar
  34. 34.
    Scabini M, Stellari F, Cappella P et al (2011) In vivo imaging of early stage apoptosis by measuring real-time caspase-3/7 activation. Apoptosis 16:198–207PubMedCrossRefGoogle Scholar
  35. 35.
    Hickson J, Ackler S, Klaubert D et al (2010) Noninvasive molecular imaging of apoptosis in vivo using a modified firefly luciferase substrate. Z-DEVD-aminoluciferin Cell Death Differ 17:1003–1010CrossRefGoogle Scholar
  36. 36.
    Maxwell D, Chang Q, Zhang X et al (2009) An improved cell-penetrating, caspase-activatable, near-infrared fluorescent peptide for apoptosis imaging. Bioconjug Chem 20:702–709PubMedCrossRefGoogle Scholar
  37. 37.
    Xiong C, Yang Z, Zhang R et al (2009) 99mTc-labeled Ac-DEVD peptides as a substrate for measuring caspase activity. Adv Exp Med Biol 611:455–456PubMedCrossRefGoogle Scholar
  38. 38.
    Bauer C, Bauder-Wuest U, Mier W et al (2005) 131I-labeled peptides as caspase substrates for apoptosis imaging. J Nucl Med 46:1066–1074PubMedGoogle Scholar
  39. 39.
    Walsh J, Kolb H (2010) Applications of click chemistry in radiopharmaceutical development. Chimia 64:29–33PubMedCrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2013

Authors and Affiliations

  • Helen Su
    • 1
  • Gang Chen
    • 1
  • Umesh Gangadharmath
    • 1
  • Luis F. Gomez
    • 1
  • Qianwa Liang
    • 1
  • Fanrong Mu
    • 1
  • Vani P. Mocharla
    • 1
  • A Katrin Szardenings
    • 1
  • Joseph C. Walsh
    • 1
  • Chun-Fang Xia
    • 1
  • Chul Yu
    • 1
  • Hartmuth C. Kolb
    • 1
  1. 1.Molecular Imaging Biomarker ResearchSiemens Medical Solutions USA, IncCulver CityUSA

Personalised recommendations