Advertisement

Molecular Imaging and Biology

, Volume 15, Issue 5, pp 614–624 | Cite as

Tumor Uptake of Hollow Gold Nanospheres After Intravenous and Intra-arterial Injection: PET/CT Study in a Rabbit VX2 Liver Cancer Model

  • Mei Tian
  • Wei Lu
  • Rui Zhang
  • Chiyi Xiong
  • Joe Ensor
  • Javier Nazario
  • James Jackson
  • Colette Shaw
  • Katherine A. Dixon
  • Jennifer Miller
  • Kenneth Wright
  • Chun Li
  • Sanjay Gupta
Research Article

Abstract

Purpose

This study was designed to investigate the intratumoral uptake of hollow gold nanospheres (HAuNS) after hepatic intra-arterial (IA) and intravenous (IV) injection in a liver tumor model.

Materials and methods

Fifteen VX2 tumor-bearing rabbits were randomized into five groups (n = 3 in each group) that received either IV 64Cu-labeled PEG-HAuNS (IV-PEG-HAuNS), IA 64Cu-labeled PEG-HAuNS (IA-PEG-HAuNS), IV cyclic peptide (RGD)-conjugated 64Cu-labeled PEG-HAuNS (IV-RGD-PEG-HAuNS), IA RGD-conjugated 64Cu-labeled PEG-HAuNS (IA-RGD-PEG-HAuNS), or IA 64Cu-labeled PEG-HAuNS with lipiodol (IA-PEG-HAuNS-lipiodol). The animals underwent PET/CT 1 h after injection, and uptake expressed as percentage of injected dose per gram of tissue (%ID/g) was measured in tumor and major organs. The animals were euthanized 24 h after injection, and tissues were evaluated for radioactivity.

Results

At 1 h after injection, animals in the IA-PEG-HAuNS-lipiodol group showed significantly higher tumor uptake (P < 0.001) and higher ratios of tumor-to-normal liver uptake (P < 0.001) than those in all other groups. The biodistribution of radioactivity 24 h after injection showed that IA delivery of PEG-HAuNS with lipiodol resulted in the highest tumor uptake (0.33 %ID/g; P < 0.001) and tumor-to-normal liver ratio (P < 0.001) among all delivery methods. At 24 h, the IA-RGD-PEG-HAuNS group showed higher tumor uptake than the IA-PEG-HAuNS group (0.20 vs. 0.099 %ID/g; P < 0.001).

Conclusion

Adding iodized oil to IA-PEG-HAuNS maximizes nanoparticle delivery to hepatic tumors and therefore may be useful in targeted chemotherapy and photoablative therapy. PET/CT can be used to noninvasively monitor the biodistribution of radiolabeled HAuNS after IV or IA injection.

Key words

Hollow gold nanospheres Liver tumor Intra-arterial injection PET/CT Copper-64 Lipiodol 

Notes

Acknowledgments

This research was supported in part by the National Institutes of Health grants CA119387 and GM092599, by a grant from the John S. Dunn Research Foundation.

Conflict of interest

None of the authors have any conflict of interest related to this manuscript.

References

  1. 1.
    Buijs M, Voosen JA, Frangakis C et al (2008) Nonresectable hepatocellular carcinoma: long-term toxicity in patients treated with transarterial chemoembolization—single-center experience. Radiology 249:346–354PubMedCrossRefGoogle Scholar
  2. 2.
    Hong K, Georgiades CS, Geschwind JF (2006) Technology insight: image-guided therapies for hepatocellular carcinoma—intra-arterial and ablative techniques. Nat Clin Pract Oncol 3:315–324PubMedCrossRefGoogle Scholar
  3. 3.
    Ridge JA, Collin C, Bading JR et al (1988) Increased adriamycin levels in hepatic implants of rabbit Vx-2 carcinoma from regional infusion. Cancer Res 48:4584–4587PubMedGoogle Scholar
  4. 4.
    Farrell D, Ptak K, Panaro NJ, Grodzinski P (2010) Nanotechnology-based cancer therapeutics—promise and challenge—lessons learned through the NCI Alliance for Nanotechnology in Cancer. Pharm Res 28:273–278PubMedCrossRefGoogle Scholar
  5. 5.
    Maeng JH, Lee DH, Jung KH et al (2010) Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31:4995–5006PubMedCrossRefGoogle Scholar
  6. 6.
    van Vlerken LE, Duan Z, Little SR et al (2010) Augmentation of therapeutic efficacy in drug-resistant tumor models using ceramide coadministration in temporal-controlled polymer-blend nanoparticle delivery systems. AAPS J 12:171–180PubMedCrossRefGoogle Scholar
  7. 7.
    Chen JH, Ling R, Yao Q et al (2004) Enhanced antitumor efficacy on hepatoma-bearing rats with adriamycin-loaded nanoparticles administered into hepatic artery. World J Gastroenterol 10:1989–1991PubMedGoogle Scholar
  8. 8.
    Chen JH, Wang L, Ling R et al (2004) Body distribution of nanoparticle-containing adriamycin injected into the hepatic artery of hepatoma-bearing rats. Dig Dis Sci 49:1170–1173PubMedCrossRefGoogle Scholar
  9. 9.
    Bhattacharya S, Novell JR, Winslet MC, Hobbs KE (1994) Iodized oil in the treatment of hepatocellular carcinoma. Br J Surg 81:1563–1571PubMedCrossRefGoogle Scholar
  10. 10.
    Okayasu I, Hatakeyama S, Yoshida T et al (1988) Selective and persistent deposition and gradual drainage of iodized oil, Lipiodol in the hepatocellular carcinoma after injection into the feeding hepatic artery. Am J Clin Pathol 90:536–544PubMedGoogle Scholar
  11. 11.
    Takaki Y, Kaminou T, Shabana M et al (2008) Suitable blending method of lipiodol–cisplatin in transcatheter arterial embolization for hepatocellular carcinoma: evaluation of sustained release and accumulation nature. Hepatogastroenterology 55:202–206PubMedGoogle Scholar
  12. 12.
    Clouse ME, Stokes KR, Kruskal JB et al (1993) Chemoembolization for hepatocellular carcinoma: epinephrine followed by a doxorubicin-ethiodized oil emulsion and gelatin sponge powder. J Vasc Interv Radiol 4:717–725PubMedCrossRefGoogle Scholar
  13. 13.
    Garin E, Denizot B, Noiret N et al (2004) 188Re-SSS lipiodol: radiolabelling and biodistribution following injection into the hepatic artery of rats bearing hepatoma. Nucl Med Commun 25:1007–1013PubMedCrossRefGoogle Scholar
  14. 14.
    Garin E, Noiret N, Malbert C et al (2004) Development and biodistribution of 188Re-SSS lipiodol following injection into the hepatic artery of healthy pigs. Eur J Nucl Med Mol Imaging 31:542–546PubMedCrossRefGoogle Scholar
  15. 15.
    Nakamura H, Hashimoto T, Oi H, Sawada S (1989) Transcatheter oily chemoembolization of hepatocellular carcinoma. Radiology 170:783–786PubMedGoogle Scholar
  16. 16.
    Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882PubMedCrossRefGoogle Scholar
  17. 17.
    Lacroix LM, Huls NF, Ho D et al (2011) Stable single-crystalline body centered cubic Fe nanoparticles. Nano Lett 11:1641–1645PubMedCrossRefGoogle Scholar
  18. 18.
    Lu W, Xiong C, Zhang G et al (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res 15:876–886PubMedCrossRefGoogle Scholar
  19. 19.
    Melancon MP, Lu W, Yang Z et al (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther 7:1730–1739CrossRefGoogle Scholar
  20. 20.
    Lu W, Zhang G, Zhang R et al (2010) Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res 70:3177–3188PubMedCrossRefGoogle Scholar
  21. 21.
    You J, Zhang G, Li C (2010) Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4:1033–1041PubMedCrossRefGoogle Scholar
  22. 22.
    Li C, Wang W, Wu Q et al (2006) Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl Med Biol 33:349–358PubMedCrossRefGoogle Scholar
  23. 23.
    Wang W, Ke S, Wu Q et al (2004) Near-infrared optical imaging of integrin alphavbeta3 in human tumor xenografts. Mol Imaging 3:343–351PubMedCrossRefGoogle Scholar
  24. 24.
    Lee HY, Li Z, Chen K et al (2008) PET/MRI dual-modality tumor imaging using arginine–glycine–aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 49:1371–1379PubMedCrossRefGoogle Scholar
  25. 25.
    Ryppa C, Mann-Steinberg H, Biniossek ML et al (2009) In vitro and in vivo evaluation of a paclitaxel conjugate with the divalent peptide E-[c(RGDfK)2] that targets integrin alpha v beta 3. Int J Pharm 368:89–97PubMedCrossRefGoogle Scholar
  26. 26.
    Geschwind JF, Ramsey DE, Cleffken B et al (2003) Transcatheter arterial chemoembolization of liver tumors: effects of embolization protocol on injectable volume of chemotherapy and subsequent arterial patency. Cardiovasc Intervent Radiol 26:111–117PubMedCrossRefGoogle Scholar
  27. 27.
    Burgener FA, Violante MR (1979) Comparison of hepatic VX2-carcinomas after intra-arterial, intraportal and intraparenchymal tumor cell injection. An angiographic and computed tomographic study in the rabbit. Invest Radiol 14:410–414PubMedCrossRefGoogle Scholar
  28. 28.
    Hu G, Lijowski M, Zhang H et al (2007) Imaging of Vx-2 rabbit tumors with alpha(nu)beta3-integrin-targeted 111In nanoparticles. Int J Cancer 120:1951–1957PubMedCrossRefGoogle Scholar
  29. 29.
    Lu W, Melancon MP, Xiong C et al (2011) Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res 71(19):6116–6121PubMedCrossRefGoogle Scholar
  30. 30.
    Wang W, Wu Q, Pasuelo M et al (2005) Probing for integrin alpha v beta3 binding of RGD peptides using fluorescence polarization. Bioconjug Chem 16:729–734PubMedCrossRefGoogle Scholar
  31. 31.
    Schwartzberg AM, Olson TY, Talley CE, Zhang JZ (2006) Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J Phys Chem B 110:19935–19944PubMedCrossRefGoogle Scholar
  32. 32.
    Geschwind JF, Ko YH, Torbenson MS et al (2002) Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62:3909–3913PubMedGoogle Scholar
  33. 33.
    Tian M, Ogawa K, Wendt R et al (2011) Whole-body biodistribution kinetics, metabolism, and radiation dosimetry estimates of 18 F-PEG6-IPQA in nonhuman primates. J Nucl Med 52:934–941PubMedCrossRefGoogle Scholar
  34. 34.
    Nye JA, Schuster DM, Yu W et al (2007) Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18 F-FACBC in humans. J Nucl Med 48:1017–1020PubMedCrossRefGoogle Scholar
  35. 35.
    Yamashita Y, Takahashi M, Fujimura N, Kan M (1987) Clinical evaluation of hepatic artery embolization: comparison between Gelfoam and Lipiodol with anticancer agent. Radiat Med 5:61–67PubMedGoogle Scholar
  36. 36.
    Ohishi H, Uchida H, Yoshimura H et al (1985) Hepatocellular carcinoma detected by iodized oil. Use of anticancer agents. Radiol 154:25–29Google Scholar
  37. 37.
    Raoul JL, Heresbach D, Bretagne JF et al (1992) Chemoembolization of hepatocellular carcinomas. A study of the biodistribution and pharmacokinetics of doxorubicin. Cancer 70:585–590PubMedCrossRefGoogle Scholar
  38. 38.
    Lijowski M, Caruthers S, Hu G et al (2009) High sensitivity: high-resolution SPECT-CT/MR molecular imaging of angiogenesis in the Vx2 model. Invest Radiol 44:15–22PubMedCrossRefGoogle Scholar
  39. 39.
    Pressly ED, Rossin R, Hagooly A et al (2007) Structural effects on the biodistribution and positron emission tomography (PET) imaging of well-defined (64)Cu-labeled nanoparticles comprised of amphiphilic block graft copolymers. Biomacromolecules 8:3126–3134PubMedCrossRefGoogle Scholar
  40. 40.
    Lu W, Huang Q, Ku G et al (2010) Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31:2617–2626PubMedCrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2013

Authors and Affiliations

  • Mei Tian
    • 1
    • 6
  • Wei Lu
    • 1
  • Rui Zhang
    • 1
  • Chiyi Xiong
    • 1
  • Joe Ensor
    • 2
  • Javier Nazario
    • 3
  • James Jackson
    • 4
  • Colette Shaw
    • 3
  • Katherine A. Dixon
    • 3
  • Jennifer Miller
    • 5
  • Kenneth Wright
    • 3
  • Chun Li
    • 1
  • Sanjay Gupta
    • 3
  1. 1.Department of Experimental Diagnostic ImagingUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  2. 2.Biostatistics, University of Texas M.D. Anderson Cancer CenterHoustonUSA
  3. 3.Department of Diagnostic RadiologyUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  4. 4.Department of Nuclear MedicineUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  5. 5.Department of Veterinary Medicine and SurgeryUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  6. 6.Department of Nuclear Medicine and Medical PET CenterThe Second Hospital of Zhejiang University School of MedicineHangzhouChina

Personalised recommendations