Molecular Imaging and Biology

, Volume 15, Issue 5, pp 576–584

Voxel-Based Analysis of Amyloid-Burden Measured with [11C]PiB PET in a Double Transgenic Mouse Model of Alzheimer’s Disease

  • Boris von Reutern
  • Barbara Grünecker
  • Behrooz H. Yousefi
  • Gjermund Henriksen
  • Michael Czisch
  • Alexander Drzezga
Research Article



The purpose of this study is to validate the feasibility of a voxel-based analysis of in vivo amyloid-β positron emission tomography (PET) imaging studies in transgenic mouse models of Alzheimer’s disease.


We performed [11C]PiB PET imaging in 20 APP/PS1 mice and 16 age-matched controls, and histologically determined the individual amyloid-β plaque load. Using SPM software, we performed a voxel-based group comparison plus a regression analysis between PiB retention and actual plaque load, both thresholded at pFWE < 0.05. In addition, we carried out an individual ROI analysis in every animal.


The automated voxel-based group comparison allowed us to identify voxels with significantly increased PiB retention in the cortical and hippocampal regions in transgenic animals compared to controls. The voxel-based regression analysis revealed a significant association between this signal increase and the actual cerebral plaque load. The validity of these results was corroborated by the individual ROI-based analysis.


Voxel-based analysis of in vivo amyloid-β PET imaging studies in mouse models of Alzheimer’s disease is feasible and allows studying the PiB retention patterns in whole brain maps. Furthermore, the selected approach in our study also allowed us to establish a quantitative relation between tracer retention and actual plaque pathology in the brain in a voxel-wise manner.

Key words

Alzheimer’s disease Double transgenic Mouse model Positron emission tomography Pittsburgh compound B Magnetic resonance imaging Voxel-based Statistical parametric mapping Amyloid precursor protein Presenilin 1 



Positron emission tomography


Alzheimer’s disease


Pittsburgh compound B, [11C]-6-OH-BTA-1



Region of interest


Statistical parametric mapping




Wild type


Magnetic resonance imaging


Amyloid precursor protein


Presenilin 1


  1. 1.
    Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–19PubMedCrossRefGoogle Scholar
  2. 2.
    Shoghi-Jadid K, Small GW, Agdeppa ED et al (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10:24–35PubMedGoogle Scholar
  3. 3.
    Verhoeff NP, Wilson AA, Takeshita S et al (2004) In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 12:584–95PubMedGoogle Scholar
  4. 4.
    Ikonomovic MD, Klunk WE, Abrahamson EE et al (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131:1630–45PubMedCrossRefGoogle Scholar
  5. 5.
    Leinonen V, Alafuzoff I, Aalto S et al (2008) Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh Compound B. Arch Neurol 65:1304–9PubMedCrossRefGoogle Scholar
  6. 6.
    Sojkova J, Driscoll I, Iacono D et al (2011) In vivo fibrillar beta-amyloid detected using [11C]PiB positron emission tomography and neuropathologic assessment in older adults. Arch Neurol 68:232–40PubMedCrossRefGoogle Scholar
  7. 7.
    Maeda J, Ji B, Irie T et al (2007) Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J Neurosci 27:10957–68PubMedCrossRefGoogle Scholar
  8. 8.
    Manook A, Yousefi BH, Willuweit A et al (2012) Small-animal PET imaging of amyloid-beta plaques with [C]PiB and its multi-modal validation in an APP/PS1 mouse model of Alzheimer’s disease. PLoS One 7:e31310PubMedCrossRefGoogle Scholar
  9. 9.
    Klunk WE, Lopresti BJ, Ikonomovic MD et al (2005) Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci 25:10598–606PubMedCrossRefGoogle Scholar
  10. 10.
    Toyama H, Ye D, Ichise M et al (2005) PET imaging of brain with the beta-amyloid probe, [11C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 32:593–600PubMedCrossRefGoogle Scholar
  11. 11.
    Yousefi BH, Manook A, Drzezga A et al (2011) Synthesis and evaluation of 11C-labeled imidazo[2,1-b]benzothiazoles (IBTs) as PET tracers for imaging beta-amyloid plaques in Alzheimer’s disease. J Med Chem 54:949–56PubMedCrossRefGoogle Scholar
  12. 12.
    Price JC, Klunk WE, Lopresti BJ et al (2005) Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 25:1528–47PubMedCrossRefGoogle Scholar
  13. 13.
    Kemppainen NM, Aalto S, Wilson IA et al (2006) Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology 67:1575–80PubMedCrossRefGoogle Scholar
  14. 14.
    Ziolko SK, Weissfeld LA, Klunk WE et al (2006) Evaluation of voxel-based methods for the statistical analysis of PIB PET amyloid imaging studies in Alzheimer’s disease. NeuroImage 33:94–102PubMedCrossRefGoogle Scholar
  15. 15.
    Mikhno A, Devanand D, Pelton G et al (2008) Voxel-based analysis of 11C-PIB scans for diagnosing Alzheimer’s disease. J Nucl Med 49:1262–9PubMedCrossRefGoogle Scholar
  16. 16.
    Kemppainen NM, Aalto S, Wilson IA et al (2007) PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 68:1603–6PubMedCrossRefGoogle Scholar
  17. 17.
    Grimmer T, Henriksen G, Wester HJ et al (2009) Clinical severity of Alzheimer’s disease is associated with PIB uptake in PET. Neurobiol Aging 30:1902–9PubMedCrossRefGoogle Scholar
  18. 18.
    Shin J, Lee SY, Kim SJ et al (2010) Voxel-based analysis of Alzheimer’s disease PET imaging using a triplet of radiotracers: PIB, FDDNP, and FDG. NeuroImage 52:488–96PubMedCrossRefGoogle Scholar
  19. 19.
    Scheinin NM, Aalto S, Koikkalainen J et al (2009) Follow-up of [11C]PIB uptake and brain volume in patients with Alzheimer disease and controls. Neurology 73:1186–92PubMedCrossRefGoogle Scholar
  20. 20.
    Edison P, Archer HA, Gerhard A et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32:412–9PubMedCrossRefGoogle Scholar
  21. 21.
    Jack CR Jr, Lowe VJ, Senjem ML et al (2008) 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 131:665–80PubMedCrossRefGoogle Scholar
  22. 22.
    Dubois A, Herard AS, Delatour B et al (2010) Detection by voxel-wise statistical analysis of significant changes in regional cerebral glucose uptake in an APP/PS1 transgenic mouse model of Alzheimer’s disease. NeuroImage 51:586–98PubMedCrossRefGoogle Scholar
  23. 23.
    Hooker JM, Patel V, Kothari S, Schiffer WK (2009) Metabolic changes in the rodent brain after acute administration of salvinorin A. Mol Imaging Biol 11:137–43PubMedCrossRefGoogle Scholar
  24. 24.
    Prieto E, Collantes M, Delgado M et al (2011) Statistical parametric maps of (1)(8)F-FDG PET and 3-D autoradiography in the rat brain: A cross-validation study. Eur J Nucl Med Mol Imaging 38:2228–37PubMedCrossRefGoogle Scholar
  25. 25.
    Casteels C, Bormans G, Van Laere K (2010) The effect of anaesthesia on [(18)F]MK-9470 binding to the type 1 cannabinoid receptor in the rat brain. Eur J Nucl Med Mol Imaging 37:1164–73PubMedCrossRefGoogle Scholar
  26. 26.
    Casteels C, Lauwers E, Baitar A et al (2010) In vivo type 1 cannabinoid receptor mapping in the 6-hydroxydopamine lesion rat model of Parkinson’s disease. Brain Res 1316:153–62PubMedCrossRefGoogle Scholar
  27. 27.
    Willuweit A, Velden J, Godemann R et al (2009) Early-onset and robust amyloid pathology in a new homozygous mouse model of Alzheimer’s disease. PLoS One 4:e7931PubMedCrossRefGoogle Scholar
  28. 28.
    Bacskai BJ, Hickey GA, Skoch J et al (2003) Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci U S A 100:12462–7PubMedCrossRefGoogle Scholar
  29. 29.
    Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  30. 30.
    Sawiak SJ, Wood NI, Williams GB et al (2009) Voxel-based morphometry in the R6/2 transgenic mouse reveals differences between genotypes not seen with manual 2D morphometry. Neurobiol Dis 33:20–7PubMedCrossRefGoogle Scholar
  31. 31.
    Brammer DW, Riley JM, Kreuser SC et al (2007) Harderian gland adenectomy: a method to eliminate confounding radio-opacity in the assessment of rat brain metabolism by 18F-fluoro-2-deoxy-D-glucose positron emission tomography. J Am Assoc Lab Anim Sci 46:42–5PubMedGoogle Scholar
  32. 32.
    Fukuyama H, Hayashi T, Katsumi Y et al (1998) Issues in measuring glucose metabolism of rat brain using PET: the effect of harderian glands on the frontal lobe. Neurosci Lett 255:99–102PubMedCrossRefGoogle Scholar
  33. 33.
    Kuge Y, Kawashima H, Yamazaki S et al (1996) [1-11C]octanoate as a potential PET tracer for studying glial functions: PET evaluation in rats and cats. Nucl Med Biol 23:1009–12PubMedCrossRefGoogle Scholar
  34. 34.
    Kuge Y, Minematsu K, Hasegawa Y et al (1997) Positron emission tomography for quantitative determination of glucose metabolism in normal and ischemic brains in rats: An insoluble problem by the Harderian glands. J Cereb Blood Flow Metab 17:116–20PubMedCrossRefGoogle Scholar
  35. 35.
    Mevel K, Desgranges B, Baron JC et al (2007) Detecting hippocampal hypometabolism in mild cognitive impairment using automatic voxel-based approaches. NeuroImage 37:18–25PubMedCrossRefGoogle Scholar
  36. 36.
    Nestor PJ, Fryer TD, Smielewski P, Hodges JR (2003) Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol 54:343–51PubMedCrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2013

Authors and Affiliations

  • Boris von Reutern
    • 1
    • 2
  • Barbara Grünecker
    • 3
  • Behrooz H. Yousefi
    • 2
    • 4
  • Gjermund Henriksen
    • 2
  • Michael Czisch
    • 3
  • Alexander Drzezga
    • 2
    • 5
  1. 1.Institute of Neuroscience and Medicine (INM-3)Research Centre JülichJülichGermany
  2. 2.Department of Nuclear Medicine, Klinikum rechts der IsarUniversity of Technology MunichMunichGermany
  3. 3.NeuroimagingMax Planck Institute of PsychiatryMunichGermany
  4. 4.Department of Pharmaceutical Radiochemistry, Faculties of Chemistry and MedicineUniversity of Technology MunichGarchingGermany
  5. 5.Department of Nuclear MedicineUniversity Hospital of CologneCologneGermany

Personalised recommendations