Advertisement

Molecular Imaging and Biology

, Volume 15, Issue 4, pp 456–467 | Cite as

Suitability of [18F]Altanserin and PET to Determine 5-HT2A Receptor Availability in the Rat Brain: In Vivo and In Vitro Validation of Invasive and Non-Invasive Kinetic Models

  • Tina Kroll
  • David Elmenhorst
  • Andreas Matusch
  • Franziska Wedekind
  • Angela Weisshaupt
  • Simone Beer
  • Andreas Bauer
Research Article

Abstract

Purpose

While the selective 5-hydroxytryptamine type 2a receptor (5-HT2AR) radiotracer [18F]altanserin is well established in humans, the present study evaluated its suitability for quantifying cerebral 5-HT2ARs with positron emission tomography (PET) in albino rats.

Procedures

Ten Sprague Dawley rats underwent 180 min PET scans with arterial blood sampling. Reference tissue methods were evaluated on the basis of invasive kinetic models with metabolite-corrected arterial input functions. In vivo 5-HT2AR quantification with PET was validated by in vitro autoradiographic saturation experiments in the same animals.

Result

Overall brain uptake of [18F]altanserin was reliably quantified by invasive and non-invasive models with the cerebellum as reference region shown by linear correlation of outcome parameters. Unlike in humans, no lipophilic metabolites occurred so that brain activity derived solely from parent compound. PET data correlated very well with in vitro autoradiographic data of the same animals.

Conclusion

[18F]Altanserin PET is a reliable tool for in vivo quantification of 5-HT2AR availability in albino rats. Models based on both blood input and reference tissue describe radiotracer kinetics adequately. Low cerebral tracer uptake might, however, cause restrictions in experimental usage.

Key words

Positron emission tomography Autoradiography 5-HT2A receptor Rat [18F]altanserin Kinetic modeling 

Notes

Acknowledgments

Magdalene Vögeling, Sabine Wilms, Babara Elghahwagi, and Dorothe Krug are gratefully acknowledged for their excellent technical assistance. Claudia Kuntner kindly provided the software for time-logging of blood sampling. We thank Nikola Kornadt-Beck for valuable discussions. Tanja Juraschek, Steffi Holz, and Larissa Damm took care of the animal housing. Johannes Ermert and Heinz H. Coenen are gratefully acknowledged for the supply of the radioligand as well as Avdo Celik and N. Jon Shah for providing MRI equipment.

Disclosure/Conflict of Interest

The authors have no conflicts of interest to disclose.

References

  1. 1.
    Elmenhorst D, Kroll T, Matusch A, Bauer A (2012) Sleep Deprivation Increases Cerebral Serotonin 2A Receptor Binding in Humans. Sleep 35:1615–1623PubMedGoogle Scholar
  2. 2.
    Frokjaer VG, Mortensen EL, Nielsen FA et al (2008) Frontolimbic Serotonin 2A Receptor Binding in Healthy Subjects Is Associated with Personality Risk Factors for Affective Disorder. Biol Psychiatry 63:569–576PubMedCrossRefGoogle Scholar
  3. 3.
    Hurlemann R, Matusch A, Kuhn KU et al (2008) 5-HT2A receptor density is decreased in the at-risk mental state. Psychopharmacology 195:579–590PubMedCrossRefGoogle Scholar
  4. 4.
    Pazos A, Cortés R, Palacios JM (1985) Quantitative Autoradiographic Mapping of Serotonin Receptors in the Rat Brain. II. Serotonin-2 Receptors. Brain Res 346:231–249PubMedCrossRefGoogle Scholar
  5. 5.
    Kristiansen H, Elfving B, Plenge P et al (2005) Binding Characteristics of the 5-HT2A Receptor Antagonists Altanserin and MDL 100907. Synapse 58:249–257PubMedCrossRefGoogle Scholar
  6. 6.
    Haugbol S, Pinborg LH, Arfan HM et al (2007) Reproducibility of 5-HT2A receptor measurements and sample size estimations with [18F]altanserin PET using a bolus/infusion approach. Eur J Nucl Med Mol Imaging 34:910–915PubMedCrossRefGoogle Scholar
  7. 7.
    Pinborg LH, Adams KH, Svarer C et al (2003) Quantification of 5-HT2A Receptors in the Human Brain Using [18F]Altanserin-PET and the Bolus/Infusion Approach. J Cereb Blood Flow Metab 23:985–996PubMedCrossRefGoogle Scholar
  8. 8.
    Tan PZ, Baldwin RM, Van Dyck CH et al (1999) Characterization of radioactive metabolites of 5-HT2A receptor PET ligand [18F]altanserin in human and rodent. Nucl Med Biol 26:601–608PubMedCrossRefGoogle Scholar
  9. 9.
    Riss PJ, Hong YT, Williamson D et al (2011) Validation and quantification of [18F]altanserin binding in the rat brain using blood input and reference tissue modeling. J Cereb Blood Flow Metab 31:2334–2342PubMedCrossRefGoogle Scholar
  10. 10.
    McDermott C, Kelly JP (2008) Comparison of the behavioural pharmacology of the Lister-Hooded with 2 commonly utilised albino rat strains. Prog Neuropsychopharmacol Biol Psychiatry 32:1816–1823PubMedCrossRefGoogle Scholar
  11. 11.
    Parsons MJ, Benca RM, Brownfield MS, Behan M (2001) Age-associated changes in the serotonergic system in rat superior colliculus and pretectum. Brain Res Bull 55:435–444PubMedCrossRefGoogle Scholar
  12. 12.
    Hamacher K, Coenen HH (2006) No-carrier-added nucleophilic 18F-labelling in an electrochemical cell exemplified by the routine production of [18F]altanserin. Appl Radiat Isot 64:989–994PubMedCrossRefGoogle Scholar
  13. 13.
    Maeshima T, Shutoh F, Hamada S et al (1998) Serotonin2A receptor-like immunoreactivity in rat cerebellar Purkinje cells. Neurosci Lett 252:72–74PubMedCrossRefGoogle Scholar
  14. 14.
    Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539PubMedCrossRefGoogle Scholar
  15. 15.
    Gunn RN, Gunn SR, Cunningham VJ (2001) Positron Emission Tomography Compartmental Models. J Cereb Blood Flow Metab 21:635–652PubMedCrossRefGoogle Scholar
  16. 16.
    Adam J, Elleaume H, Le Duc G et al (2003) Absolute cerebral blood volume and blood flow measurements based on synchrotron radiation quantitative computed tomography. J Cereb Blood Flow Metab 23:499–512PubMedCrossRefGoogle Scholar
  17. 17.
    Logan J, Fowler JS, Volkow ND et al (1990) Graphical Analysis of Reversible Radioligand Binding from Time-Activity Measurements Applied to [N-11C-methyl]-( − )-Cocaine PET Studies in Human Subjects. J Cereb Blood Flow Metab 10:740–747PubMedCrossRefGoogle Scholar
  18. 18.
    Ichise M, Toyama H, Innis RB, Carson RE (2002) Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab 22:1271–1281PubMedCrossRefGoogle Scholar
  19. 19.
    Lammertsma AA, Hume SP (1996) Simplified Reference Tissue Model for PET Receptor Studies. NeuroImage 4:153–158PubMedCrossRefGoogle Scholar
  20. 20.
    Wu Y, Carson RE (2002) Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab 22:1440–1452PubMedCrossRefGoogle Scholar
  21. 21.
    Logan J, Fowler JS, Volkow ND et al (1996) Distribution Volume Ratios Without Blood Sampling from Graphical Analysis of PET Data. J Cereb Blood Flow Metab 16:834–840PubMedCrossRefGoogle Scholar
  22. 22.
    Ichise M, Loiw JS, Lu JQ et al (2003) Linearized Reference Tissue Parametric Imaging Methods: Application to [11C]DASB Positron Emission Tomography Studies of the Serotonin Transporter in Human Brain. J Cereb Blood Flow Metab 23:1096–1112PubMedCrossRefGoogle Scholar
  23. 23.
    Mintun MA, Raichle ME, Kilbourn MR, Wooton GF, Welch MJ (1984) A Quantitative Model for the In Vivo Assessment of Drug Binding Sites with Positron Emission Tomography. Ann Neurol 15:217–227PubMedCrossRefGoogle Scholar
  24. 24.
    López-Giménez JF, Mengod G, Palacios JM, Vilaró MT (1997) Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907. Naunyn-Schmiedeberg’s Arch Pharmacol 356:446–454CrossRefGoogle Scholar
  25. 25.
    Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  26. 26.
    Chen F, Lawrence AJ (2003) The effects of antidepressant treatment on serotonergic and dopaminergic systems in Fawn–Hooded rats: a quantitative autoradiography study. Brain Res 976:22–29PubMedCrossRefGoogle Scholar
  27. 27.
    Sato H, Skelin I, Diksic M (2010) Chronic buspirone treatment decreases 5-HT1B receptor densities and the serotonin transporter but increases the density of 5-HT2A receptors in the bulbectomized rat model of depression: an autoradiographic study. Brain Res 1345:28–40PubMedCrossRefGoogle Scholar
  28. 28.
    Syvänen S, Lindhe Ö, Palner M et al (2009) Species Differences in Blood–brain Barrier Transport of Three Positron Emission Tomography Radioligands with Emphasis on P- Glycoprotein Transport. Drug Metab Dispos 37:635–643PubMedCrossRefGoogle Scholar
  29. 29.
    Preece MA, Dalley JW, Theobald DEH, Robbins TW, Reynolds GP (2004) Region Specific Changes in Forebrain 5-Hydroxytryptamine1A and 5-Hydroxytryptamine2A Receptors in isolation-reared Rats: An in vitro autoradiographic Study. Neuroscience 123:725–732PubMedCrossRefGoogle Scholar
  30. 30.
    Hamada S, Senzaki K, Hamguchi-Hamada K et al (1998) Localization of 5-HT2A Receptor in rat cerebral cortex and olfactory system revealed by immunohistochemistry using two antibodies raised in rabbit and chicken. Mol Brain Res 54:199–211PubMedCrossRefGoogle Scholar
  31. 31.
    Xu T, Pandey SC (2000) Cellular localization of serotonin2A (5HT2A) receptors in the rat brain. Brain Res Bull 51:499–505PubMedCrossRefGoogle Scholar
  32. 32.
    Biver F, Lotstra F, Monclus M et al (1997) In vivo binding of [18F]altanserin to rat brain 5HT2 receptors: a film and electronic autoradiographic study. Nucl Med Biol 24:357–360PubMedCrossRefGoogle Scholar
  33. 33.
    Elmenhorst D, Minuzzi L, Aliaga A et al (2010) In vivo and in vitro validation of reference tissue models for the mGluR5 ligand [11C]ABP688. J Cereb Blood Flow Metab 30:1538–1549PubMedCrossRefGoogle Scholar
  34. 34.
    Gallezot JD, Nabulsi N, Neumeister A et al (2010) Kinetic modeling of the serotonin 5-HT1B receptor radioligand [11C]P943 in humans. J Cereb Blood Flow Metab 30:196–210PubMedCrossRefGoogle Scholar
  35. 35.
    Meyer PT, Bhagwagar Z, Cowen PJ et al (2010) Simplified quantification of 5-HT2A receptors in the human brain with [11C]MDL 100,907 PET and non-invasive kinetic analyses. NeuroImage 50:984–993PubMedCrossRefGoogle Scholar
  36. 36.
    Forutan F, Estalj S, Beu M et al (2002) Distribution of 5HT2A receptors in the human brain: comparison of data in vivo and post mortem. Nuklearmedizin 41:197–201PubMedGoogle Scholar
  37. 37.
    Strome EM, Cepeda IL, Sossi V, Doudet DJ (2006) Evaluation of the Integrity of the Dopamine System in a Rodent Model of Parkinson’s Disease: Small Animal Positron Emission Tomography Compared to Behavioral Assessment and Autoradiography. Mol Imaging Biol 8:292–299PubMedCrossRefGoogle Scholar
  38. 38.
    Fischer K, Sossi V, von Ameln-Mayerhofer A, Reischl G, Pichler BJ (2012) In vivo quantification of dopamine transporters in mice with unilateral 6-OHDA lesions using [11C]methylphenidate and PET. NeuroImage 59:2413–2422PubMedCrossRefGoogle Scholar
  39. 39.
    Manook A, Yousefi BH, Willuweit A et al (2012) Small-Animal PET Imaging of Amyloid-Beta Plaques with [11C]PiB and Its Multi-Modal Validation in an APP/PS1 Mouse Model of Alzheimer’s Disease. PLoS One 7:e31310PubMedCrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2013

Authors and Affiliations

  • Tina Kroll
    • 1
  • David Elmenhorst
    • 1
  • Andreas Matusch
    • 1
  • Franziska Wedekind
    • 1
  • Angela Weisshaupt
    • 1
  • Simone Beer
    • 1
    • 2
  • Andreas Bauer
    • 1
    • 3
  1. 1.Institute of Neuroscience and MedicineINM-2, Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Central Institute for ElectronicsForschungszentrum Jülich GmbHJülichGermany
  3. 3.Neurological DepartmentHeinrich-Heine-University DüsseldorfDüsseldorfGermany

Personalised recommendations