Advertisement

Molecular Imaging and Biology

, Volume 15, Issue 1, pp 3–11 | Cite as

Real-Time Assessment of Ultrasound-Mediated Drug Delivery Using Fibered Confocal Fluorescence Microscopy

  • Marc Derieppe
  • Anna Yudina
  • Matthieu Lepetit-Coiffé
  • Baudouin Denis de Senneville
  • Clemens Bos
  • Chrit MoonenEmail author
Research Article

Abstract

Purpose

Transport across the plasma membrane is a critical step of drug delivery for weakly permeable compounds with intracellular mode of action. The purpose of this study is to demonstrate real-time monitoring of ultrasound (US)-mediated cell-impermeable model drug uptake with fibered confocal fluorescence microscopy (FCFM).

Procedures

An in vitro setup was designed to combine a mono-element US transducer, a cell chamber with a monolayer of tumor cells together with SonoVue microbubbles, and a FCFM system. The cell-impermeable intercalating dye, SYTOX Green, was used to monitor US-mediated uptake.

Results

The majority of the cell population showed fluorescence signal enhancement 10 s after US onset. The mean rate constant k of signal enhancement was calculated to be 0.23 ± 0.04 min−1.

Conclusions

Feasibility of real-time monitoring of US-mediated intracellular delivery by FCFM has been demonstrated. The method allowed quantitative assessment of model drug uptake, holding great promise for further local drug delivery studies.

Key Words

Drug delivery Biological barrier Plasma membrane permeabilization Ultrasound bioeffects Fibered confocal fluorescence microscopy Pharmacokinetic parameters SYTOX Green US-mediated drug delivery 

Notes

Acknowledgments

We are grateful to Dr. J.R. Cazalets and colleagues (INCIA UMR 5287/University Bordeaux 2, France) for letting us use their cell culture facility. This study was supported by EU project SonoDrugs (FP7-NMP4-LA-2008-213706), ERC project 268906 “Sound Pharma”, and Foundation InNaBioSanté—project ULTRAFITT.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

ESM 1

(MPG 21268 kb)

References

  1. 1.
    Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822PubMedCrossRefGoogle Scholar
  2. 2.
    Yeh ETH (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109:3122–3131PubMedCrossRefGoogle Scholar
  3. 3.
    Krishna R, Yu L (2008) Biopharmaceutics applications in drug development. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Skauen DM, Zentner GM (1984) Phonophoresis. Int J Pharm 20:235–245CrossRefGoogle Scholar
  5. 5.
    Miller MW, Miller DL, Brayman AA (1996) A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 22:1131–1154PubMedCrossRefGoogle Scholar
  6. 6.
    Mitragotri S (2005) Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4:255–260PubMedCrossRefGoogle Scholar
  7. 7.
    Sundaram J, Mellein BR, Mitragotri S (2003) An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J 84:3087–3101PubMedCrossRefGoogle Scholar
  8. 8.
    Ter Haar G (2007) Therapeutic applications of ultrasound. Prog Biophys Mol Biol 93:111–129PubMedCrossRefGoogle Scholar
  9. 9.
    Krasovitski B, Frenkel V, Shoham S et al (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. PNAS 108(8):3258–3263PubMedCrossRefGoogle Scholar
  10. 10.
    Ogawa K, Tachibana K, Uchida T et al (2001) High-resolution scanning electron microscopic evaluation of cell-membrane porosity by ultrasound. Med Electron Microscopy 34:249–253CrossRefGoogle Scholar
  11. 11.
    Mehier-Humbert S, Bettinger T, Yan F et al (2005) Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J Control Release 104(1):213–222PubMedCrossRefGoogle Scholar
  12. 12.
    White NS, Errington RJ (2005) Fluorescence techniques for drug delivery research: theory and practice. Adv Drug Deliv Rev 57:17–42PubMedCrossRefGoogle Scholar
  13. 13.
    Staruch R, Chopra R, Hynynen K (2011) Localised drug release using MRI-controlled focused ultrasound hyperthermia. Int J Hyperthermia 27(2):156–171PubMedCrossRefGoogle Scholar
  14. 14.
    Dreher MR, Liu W, Michelich CR et al (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344PubMedCrossRefGoogle Scholar
  15. 15.
    Deckers R, Yudina A, Cardoit LC et al (2011) A fluorescent chromophore TOTO-3 as a “smart probe” for the assessment of ultrasound-mediated local drug delivery in vivo. Contrast Media Mol Imaging 6:267–274PubMedGoogle Scholar
  16. 16.
    Chin CT, Lancee C, Borsboom J et al (2003) Brandaris 128: a digital 25 million frames per second camera with 128 highly sensitive frames. Rev Sci Instrum 74:5026–5034CrossRefGoogle Scholar
  17. 17.
    Van Wamel A, Kooiman K, Harteveld M et al (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 112:149–155PubMedCrossRefGoogle Scholar
  18. 18.
    Kooiman K, Foppen-Harteveld M, Van der Steen AFW et al (2011) Sonoporation of endothelial cells by vibrating targeted microbubbles. J Control Release 154:35–41PubMedCrossRefGoogle Scholar
  19. 19.
    Al-Gubory KH, Houdebine LM (2006) In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy. Eur J Cell Biol 85:837–845PubMedCrossRefGoogle Scholar
  20. 20.
    Luciani A, Wilhelm C, Bruneval P et al (2009) Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver. Eur Radiol 19:1087–1096PubMedCrossRefGoogle Scholar
  21. 21.
    Lin KY, Maricevich M, Bardeesy N et al (2008) In vivo quantitative microvasculature phenotype imaging of healthy and malignant tissues using a fiber-optic confocal laser microprobe. Transl Oncol 1:84–94PubMedCrossRefGoogle Scholar
  22. 22.
    Yudina A, Lepetit-Coiffé M, Moonen CTW (2010) Evaluation of the temporal window for drug delivery following ultrasound-mediated membrane permeability enhancement. Mol Imaging Biol 13:239–249CrossRefGoogle Scholar
  23. 23.
    Lepetit-Coiffé M, Yudina A, Lourenço de Oliveira P et al (2009) Correlation of ultrasound-mediated drug delivery with acoustical properties of the transducer by macroscopic fluorescence imaging. ISTUarticlet, Aix-en-Provence, FranceGoogle Scholar
  24. 24.
    Greis C (2004) Technology overview: SonoVue (Bracco, Milan). Eur Radiol 14:11–15CrossRefGoogle Scholar
  25. 25.
    Sung KB, Richards-Kortum R, Follen M et al (2003) Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo. Opt Express 11:3171–3181PubMedCrossRefGoogle Scholar
  26. 26.
    Hallow DM, Mahajan AD, Prausnitz MR (2007) Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries. J Control Release 118:285–293PubMedCrossRefGoogle Scholar
  27. 27.
    Papenfuss HD, Gross JF, Intaglietta M et al (1979) A transparent access chamber for the rat dorsal skin fold. Microvasc Res 18:311–318PubMedCrossRefGoogle Scholar
  28. 28.
    Lehr HA, Leunig M, Menger MD et al (1993) Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol 143:1055–1062PubMedGoogle Scholar
  29. 29.
    Horowitz SB (1972) The permeability of the amphibian oocyte nucleus, in situ. J Cell Biol 54:609–625PubMedCrossRefGoogle Scholar
  30. 30.
    Gerace L, Burke B (1988) Functional organization of the nuclear envelope. Ann Rev Cell Biol 4:335–374PubMedCrossRefGoogle Scholar
  31. 31.
    Huber PE, Pfisterer P (2000) In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther 7:1516–1525PubMedCrossRefGoogle Scholar
  32. 32.
    Yudina A, de Smet M, Lepetit-Coiffé M et al (2011) Ultrasound-mediated intracellular drug delivery using microbubbles and temperature-sensitive liposomes. J Control Release 155:442–448PubMedCrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2012

Authors and Affiliations

  • Marc Derieppe
    • 1
    • 2
  • Anna Yudina
    • 1
    • 2
  • Matthieu Lepetit-Coiffé
    • 1
  • Baudouin Denis de Senneville
    • 1
    • 3
  • Clemens Bos
    • 2
  • Chrit Moonen
    • 1
    • 2
    Email author
  1. 1.Laboratory for Molecular and Functional Imaging: From Physiology to TherapyFRE 3313–CNRS and University Bordeaux SegalenBordeaux cedexFrance
  2. 2.Imaging DivisionUniversity Medical Center UtrechtUtrechtNetherlands
  3. 3.Institut de Mathématiques de BordeauxUMR 5251–CNRS–Université Bordeaux 1–INRIABordeauxFrance

Personalised recommendations