Molecular Imaging and Biology

, Volume 14, Issue 6, pp 676–687 | Cite as

Specific Chemotaxis of Magnetically Labeled Mesenchymal Stem Cells: Implications for MRI of Glioma

  • Margaret F. Bennewitz
  • Kevin S. Tang
  • Eleni A. Markakis
  • Erik M. Shapiro
Research Article



Glioblastoma multiforme (GBM) is a lethal disease marked by infiltration of cancerous cells into the surrounding normal brain. The dire outcome of GBM patients stems in part from the limitations of current neuroimaging methods. Notably, early cancer detection methodologies are lacking, without the ability to identify aggressive, metastatic tumor cells. We propose a novel approach for tumor detection using magnetic resonance imaging (MRI) based on imaging specific tumor tropism of mesenchymal stem cells (MSCs) labeled with micron-sized iron oxide particles (MPIOs).


MPIO labeled and unlabeled MSCs were compared for viability, multi-lineage differentiation, and migration, where both chemotactic and chemokinetic movement were assessed in the presence of serum-free medium, serum-containing medium, and glioma-conditioned medium. MRI was performed on agarose samples, consisting of MPIO-labeled single MSCs, to confirm the capability to detect single cells.


We determined that MPIO-labeled MSCs exhibit specific and significant chemotactic migration towards glioma-conditioned medium in vitro. Confocal fluorescence microscopy confirmed that MPIOs are internalized and do not impact important cell processes of MSCs. Lastly, MPIO-labeled MSCs appear as single distinct, dark spots on T2*-weighted MRI, supporting the robustness of this contrast agent for cell tracking.


This is the first study to show that MPIO-labeled MSCs exhibit specific tropism toward tumor-secreted factors in vitro. The potential for detecting single MPIO-labeled MSCs provides rationale for in vivo extension of this methodology to visualize GBM in animal models.

Key words

Mesenchymal stem cell Glioma Iron oxide particles Chemotaxis MRI 



This research was supported by NIH grant DP2 OD004362. We thank Dr. Diane Krause, Yale University School of Medicine, for helpful discussions and Mr. Thomas Ardito, Yale Stem Cell Center, for confocal expertise.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Stupp R, Mason W, van der Bent M, Weller M, Fisher B, Taphoorn M (2005) Radiotherapy plus concomitant and adjuvant temozolamide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  2. 2.
    Jansen E, Dewit L, van Herk M, Bartelink H (2000) Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol 56:151–156PubMedCrossRefGoogle Scholar
  3. 3.
    Sage M (1982) Blood–brain barrier: phenomenon of increasing importance to the imaging clinician. AJF AM J Roentgenol 138:887–898Google Scholar
  4. 4.
    Pierallini A, Bonamini M, Pantano P (1998) Radiological assessment of necrosis in glioblastoma: variability and prognostic value. Neuroradiology 40:150–153PubMedCrossRefGoogle Scholar
  5. 5.
    Carter R, Pretorius P (2007) The use of CT and MRI in the characterization of intracranial mass lesions. Imaging 19:173–184CrossRefGoogle Scholar
  6. 6.
    Mechtler L (2008) Neuroimaging in neuro-oncology. Neurol Clin 27:171–201CrossRefGoogle Scholar
  7. 7.
    Strupp R, Hegi M, Glibert M, Chakravarti A (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 16:1405–1409Google Scholar
  8. 8.
    Liang B, Thornton A, Sandler H, Greenberg H (1991) Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. J Neurosurg 75:559–563PubMedCrossRefGoogle Scholar
  9. 9.
    Allard E, Passirani C, Benoit J (2009) Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30:2303–2318CrossRefGoogle Scholar
  10. 10.
    Clarke J, Chang S (2009) Pseudoprogression and pseudoresponse: challenges in brain tumor imaging. Curr Neurol Neurosci 9:241–246CrossRefGoogle Scholar
  11. 11.
    Jacobs A, Kracht L, Gossmann A et al (2005) Imaging in neurooncology. NeuroRx 2:333–347PubMedCrossRefGoogle Scholar
  12. 12.
    Yang I, Aghi M (2009) New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol 6:648–657PubMedCrossRefGoogle Scholar
  13. 13.
    Nakamura K, Ito Y, Kawano Y et al (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11:1155–1164PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang Z, Jiang Z, Jiang F et al (2004) In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. NeuroImage 23:281–287PubMedCrossRefGoogle Scholar
  15. 15.
    Aboody K (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 97:12846–12851PubMedCrossRefGoogle Scholar
  16. 16.
    Tabatabai G, Bahr O, Mohle R, Eyupoglu I, Boehmler A, Wischhusen J (2005) Lessons from the bone marrow: how malignant gliomas attract adult haematopoietic progenitor cells. Brain 128:2200–2211PubMedCrossRefGoogle Scholar
  17. 17.
    Badie B, Schartner J (2000) Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 46:957–961PubMedGoogle Scholar
  18. 18.
    Strik H, Stoll M, Meyermann R (2004) Immune cell infiltration of intrinsic and metastatic intracranial tumors. Anticancer Res 24:37–42PubMedGoogle Scholar
  19. 19.
    Watanabe T, Tanaka R, Taniguchi Y, Yamamoto K, Ono K, Yoshida S (1998) The role of microglia and tumor-primed lymphocytes in the interaction between T lymphocytes and brain endothelial cells. J Neuroimmunol 81:90–97PubMedCrossRefGoogle Scholar
  20. 20.
    Badie B, Schartner J (2001) Role of microglia in glioma biology. Microsc Res Tech 54:106–113PubMedCrossRefGoogle Scholar
  21. 21.
    Birnbaum T, Roider J, Schankin C et al (2007) Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 83:241–247PubMedCrossRefGoogle Scholar
  22. 22.
    Corsten M, Shah K (2008) Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol 9:376–384PubMedCrossRefGoogle Scholar
  23. 23.
    Shapiro E, Koretsky A (2008) Micron-sized iron oxide particles (MPIOs) for cellular imaging: more bang for the buck. Springer Science+Business Media, New YorkGoogle Scholar
  24. 24.
    Hinds K, Hill J, Shapiro E et al (2003) Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102:867–872PubMedCrossRefGoogle Scholar
  25. 25.
    Nkansah M, Thakral D, Shapiro E (2011) Magnetic poly(lactide-co-glycolide) and cellulose particles for MRI-based cell tracking. Magn Reson Med 65:1776–1785PubMedCrossRefGoogle Scholar
  26. 26.
    Shapiro E, Skrtic S, Sharer K, Hill J, Dunbar C, Koretsky A (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci U S A 101:10901–10906PubMedCrossRefGoogle Scholar
  27. 27.
    Shapiro E, Skrtic S, Koretsky A (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53:329–338PubMedCrossRefGoogle Scholar
  28. 28.
    Kalish H, Arbab A, Miller B et al (2003) Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: relationship between relaxivities, electrostatic forces, and chemical composition. Magn Reson Med 50:275–282PubMedCrossRefGoogle Scholar
  29. 29.
    Xin-Qin Kang W-JZ, Song Tu-Sheng, Xiao-Li Xu, Xiao-Jiang Yu, Li D-L, Meng Ke-Wei, Sheng-Li Wu, Zhao Z-Y (2005) Rat bone marrow mesenchymal stem cells differentiate into hepatocytes in vitro. World J Gastroenterol 11:3479–3484PubMedGoogle Scholar
  30. 30.
    Naresh Polisetti CVG, Babu PP, Vemuganti GK (2010) Isolation, characterization and differentiation potential of rat bone marrow stromal cells. Neurology India 58:201–208PubMedCrossRefGoogle Scholar
  31. 31.
    Chen A, Siow B, Blamire A, Lako M, Clowry G (2010) Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury. Stem Cell Res 5:255–266PubMedCrossRefGoogle Scholar
  32. 32.
    Ma G, QI C, Liu N et al (2011) Efficiently tracking of stem cells in vivo using different kinds of superparamagnetic iron oxide in swine with myocardial infarction. Chin Med J 124:1199–1204PubMedGoogle Scholar
  33. 33.
    Saldanha K, Doan R, Ainslie K, Desai T, Majumdar S (2011) Micrometer-sized iron oxide particle labeling of mesenchymal stem cells for magnetic resonance imaging-based monitoring of cartilage tissue engineering. Magn Reson Imaging 29:40–49PubMedCrossRefGoogle Scholar
  34. 34.
    Gonzalez-Lara L, Xu X, Hofstetrova K et al (2011) The use of cellular magnetic resonance imaging to track the fate of iron-labeled multipotent stromal cells after direct transplantation in a mouse model of spinal cord injury. Mol Imaging Biol 13:702–711PubMedCrossRefGoogle Scholar
  35. 35.
    Nakamizo A, Marini F, Amano T et al (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318PubMedGoogle Scholar
  36. 36.
    Xu F, Shi J, Yu B, Ni W, Wu X, Gu Z (2010) Chemokines mediate mesenchymal stem cell migration toward gliomas in vitro. Oncol Rep 23:1561–1567PubMedGoogle Scholar
  37. 37.
    Ozaki Y, Nishimura M, Sekiya K et al (2007) Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev 16:119–129PubMedCrossRefGoogle Scholar
  38. 38.
    Ponte A, Marais E, Gallay N et al (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25:1737–1745PubMedCrossRefGoogle Scholar
  39. 39.
    Kollar K, Cook M, Atkinson K, Brooke G (2009) Molecular mechanisms involved in mesenchymal stem cell migration to the site of myocardial infarction. Int J Cell Biol 2009:904682PubMedGoogle Scholar
  40. 40.
    Shi M, Li J, Liao L et al (2007) Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92:897–904PubMedCrossRefGoogle Scholar
  41. 41.
    Cheng Z, Ou L, Zhou X et al (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 16:571–579PubMedCrossRefGoogle Scholar
  42. 42.
    Chien L, Hsiao J, Hsu S et al (2011) In vivo magnetic resonance imaging of cell tropism, trafficking mechanism, and therapeutic impact of human mesenchymal stem cells in a murine glioma model. Biomaterials 32:3275–3284PubMedCrossRefGoogle Scholar
  43. 43.
    Kim D, Kim J, Lee J et al (2009) Overexpression of CXC chemokine receptors is required for the superior glioma-tracking property of umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev 18:511–519PubMedCrossRefGoogle Scholar
  44. 44.
    Wu X, Hu J, Zhou L et al (2008) In vivo tracking of superparamagnetic iron oxide nanoparticle-labeled mesenchymal stem cell tropism to malignant gliomas using magnetic resonance imaging. J Neurosurg 108:320–329PubMedCrossRefGoogle Scholar
  45. 45.
    Park S, Ryu C, Kim S et al (2011) CXCR4-transfected human umbilical cord blood-derived mesenchymal stem cells exhibit enhanced migratory capacity toward gliomas. Int J Oncol 38:97–103PubMedGoogle Scholar
  46. 46.
    Bexell D, Gunnarsson S, Tormin A et al (2008) Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Cell Therapy 17:183–190Google Scholar
  47. 47.
    Shapiro E, Sharer K, Skrtic S, Koretsky A (2006) In vivo detection of single cells by MRI. Magn Reson Med 55:242–249PubMedCrossRefGoogle Scholar
  48. 48.
    Studeny M, Marini F, Champlin R, Zompetta C, Fidler I, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res 62:3603–3608PubMedGoogle Scholar
  49. 49.
    Gunnarsson S, Bexel D, Svensson A, Siesjo P, Darabi A, Bengzon J (2010) Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNγ-transduced tumor cell immunotherapy of experimental glioma. J Neuroimmunol 218:140–144PubMedCrossRefGoogle Scholar
  50. 50.
    Xu G, Jiang X, Xu Y et al (2009) Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of gliomas in rats. Cell Biol Int 33:466–474PubMedCrossRefGoogle Scholar
  51. 51.
    Yong R, Shinojima N, Fueyo J et al (2009) Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Δ24-RGD to human gliomas. Cancer Res 69:8932–8940PubMedCrossRefGoogle Scholar
  52. 52.
    Menon L, Kelly K, Yang H, Kim S, Black P, Carroll R (2009) Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 27:2320–2330PubMedCrossRefGoogle Scholar
  53. 53.
    Sasportas L, Kasmieh R, Wakimoto H et al (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. PNAS 106:4822–4827PubMedCrossRefGoogle Scholar
  54. 54.
    Walczak P, Zhang J, Gilad A et al (2008) Dual-modality monitoring of targeted intraarterial dlivery of mesenchymal stem cells after transient ischemia. Stroke 39:1569–1574PubMedCrossRefGoogle Scholar
  55. 55.
    Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180:2581–2587PubMedGoogle Scholar
  56. 56.
    Klopp A, Spaeth E, Dembinski J et al (2007) Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67:11687–11695PubMedCrossRefGoogle Scholar
  57. 57.
    Francois S, Bensidhoum M, Mouiseddine M et al (2006) Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 24:1020–1029PubMedCrossRefGoogle Scholar
  58. 58.
    Henschler R, Deak E, Seifried E (2008) Homing of mesenchymal stem cells. Transfus Med Hemother 35:306–312PubMedCrossRefGoogle Scholar
  59. 59.
    Kraitchman D, Tatsumi M, Glison W et al (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112:1451–1461PubMedCrossRefGoogle Scholar
  60. 60.
    Hauger O, Frost E, van Heeswijk R et al (2006) MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 238:200–210PubMedCrossRefGoogle Scholar
  61. 61.
    Gao J, Dennis J, Muzic R, Lundberg M, Caplan A (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20PubMedCrossRefGoogle Scholar
  62. 62.
    Bexell D, Scheding S, Bengzon J (2010) Toward brain tumor gene therapy using multipotent mesenchymal stromal cell vectors. Mol Ther 18:1067–1075PubMedCrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2012

Authors and Affiliations

  • Margaret F. Bennewitz
    • 1
  • Kevin S. Tang
    • 1
  • Eleni A. Markakis
    • 2
    • 3
  • Erik M. Shapiro
    • 1
    • 2
    • 3
  1. 1.Department of Biomedical EngineeringYale UniversityNew HavenUSA
  2. 2.Molecular and Cellular MRI Laboratory, Magnetic Resonance Research Center, Department of Diagnostic RadiologyYale University School of MedicineNew HavenUSA
  3. 3.Yale Stem Cell CenterYale University School of MedicineNew HavenUSA

Personalised recommendations