Molecular Imaging and Biology

, Volume 14, Issue 6, pp 762–770 | Cite as

Longitudinal PET Imaging of Doxorubicin-Induced Cell Death with 18F-Annexin V

  • Shuo Hu
  • Dale O. Kiesewetter
  • Lei Zhu
  • Ning Guo
  • Haokao Gao
  • Gang Liu
  • Naoki Hida
  • Lixin Lang
  • Gang NiuEmail author
  • Xiaoyuan ChenEmail author
Research Article



This study aims to apply longitudinal positron emission tomography (PET) imaging with 18 F-Annexin V to visualize and evaluate cell death induced by doxorubicin in a human head and neck squamous cell cancer UM-SCC-22B tumor xenograft model.


In vitro toxicity of doxorubicin to UM-SCC-22B cells was determined by a colorimetric assay. Recombinant human Annexin V protein was expressed and purified. The protein was labeled with fluorescein isothiocyanate for fluorescence staining and 18 F for PET imaging. Established UM-SCC-22B tumors in nude mice were treated with two doses of doxorubicin (10 mg/kg each dose) with 1 day interval. Longitudinal 18 F-Annexin V PET was performed at 6 h, 24 h, 3 days, and 7 days after the treatment started. Following PET imaging, direct tissue biodistribution study was performed to confirm the accuracy of PET quantification.


Two doses of doxorubicin effectively inhibited the growth of UM-SCC-22B tumors by inducing cell death including apoptosis. The cell death was clearly visualized by 18 F-Annexin V PET. The peak tumor uptake, which was observed at day 3 after treatment started, was significantly higher than that in the untreated tumors (1.56 ± 0.23 vs. 0.89 ± 0.31%ID/g, p < 0.05). Moreover, the tumor uptake could be blocked by co-injection of excess amount of unlabeled Annexin V protein. At day 7 after treatment, the tumor uptake of 18 F-Annexin had returned to baseline level.


18 F-Annexin V PET imaging is sensitive enough to allow visualization of doxorubicin-induced cell death in UM-SCC-22B xenograft model. The longitudinal imaging with 18 F-Annexin will be helpful to monitor early response to chemotherapeutic anti-cancer drugs.

Key words

18 F-Annexin V Doxorubicin Apoptosis PET Chemotherapy 



This project was supported by the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), and the International Cooperative Program of the National Science Foundation of China (NSFC) (81028009).

Conflict of Interest

The authors declare they have no conflicts of interest.


  1. 1.
    Young RC, Ozols RF, Myers CE (1981) The anthracycline antineoplastic drugs. N Engl J Med 305:139–153CrossRefPubMedGoogle Scholar
  2. 2.
    Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348CrossRefPubMedGoogle Scholar
  3. 3.
    Otsuki Y, Li Z, Shibata MA (2003) Apoptotic detection methods—from morphology to gene. Prog Histochem Cytochem 38:275–339CrossRefPubMedGoogle Scholar
  4. 4.
    Massoud TF, Gambhir SS (2007) Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm. Trends Mol Med 13:183–191CrossRefPubMedGoogle Scholar
  5. 5.
    Seddon BM, Workman P (2003) The role of functional and molecular imaging in cancer drug discovery and development. Br J Radiol 76(Spec No 2):S128–138CrossRefPubMedGoogle Scholar
  6. 6.
    Niu G, Chen X (2010) Apoptosis imaging: beyond Annexin V. J Nucl Med 51:1659–1662CrossRefPubMedGoogle Scholar
  7. 7.
    Blankenberg FG, Katsikis PD, Tait JF et al (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 95:6349–6354CrossRefPubMedGoogle Scholar
  8. 8.
    Tait JF, Cerqueira MD, Dewhurst TA et al (1994) Evaluation of Annexin V as a platelet-directed thrombus targeting agent. Thromb Res 75:491–501CrossRefPubMedGoogle Scholar
  9. 9.
    Blankenberg FG, Katsikis PD, Tait JF et al (1999) Imaging of apoptosis (programmed cell death) with 99mTc Annexin V. J Nucl Med 40:184–191PubMedGoogle Scholar
  10. 10.
    Lahorte CM, Vanderheyden JL, Steinmetz N et al (2004) Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med Mol Imaging 31:887–919CrossRefPubMedGoogle Scholar
  11. 11.
    Ohtsuki K, Akashi K, Aoka Y et al (1999) Technetium-99m HYNIC-Annexin V: a potential radiopharmaceutical for the in-vivo detection of apoptosis. Eur J Nucl Med 26:1251–1258CrossRefPubMedGoogle Scholar
  12. 12.
    Ke S, Wen X, Wu QP et al (2004) Imaging taxane-induced tumor apoptosis using PEGylated, 111In-labeled annexin V. J Nucl Med 45:108–115PubMedGoogle Scholar
  13. 13.
    Haas RL, de Jong D, Valdes Olmos RA et al (2004) In vivo imaging of radiation-induced apoptosis in follicular lymphoma patients. Int J Radiat Oncol Biol Phys 59:782–787CrossRefPubMedGoogle Scholar
  14. 14.
    Kurihara H, Yang DJ, Cristofanilli M et al (2008) Imaging and dosimetry of 99mTc EC Annexin V: preliminary clinical study targeting apoptosis in breast tumors. Appl Radiat Isot 66:1175–1182CrossRefPubMedGoogle Scholar
  15. 15.
    Kartachova M, Haas RL, Olmos RA et al (2004) In vivo imaging of apoptosis by 99mTc-annexin V scintigraphy: visual analysis in relation to treatment response. Radiother Oncol 72:333–339CrossRefPubMedGoogle Scholar
  16. 16.
    Belhocine T, Steinmetz N, Hustinx R et al (2002) Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8:2766–2774PubMedGoogle Scholar
  17. 17.
    Niu G, Cai W, Chen X (2008) Molecular imaging of human epidermal growth factor receptor 2 (HER-2) expression. Front Biosci 13:790–805CrossRefPubMedGoogle Scholar
  18. 18.
    Glaser M, Collingridge DR, Aboagye EO et al (2003) Iodine-124 labelled Annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. Appl Radiat Isot 58:55–62CrossRefPubMedGoogle Scholar
  19. 19.
    Bauwens M, De Saint-Hubert M, Devos E et al (2011) Site-specific 68Ga-labeled Annexin A5 as a PET imaging agent for apoptosis. Nucl Med Biol 38:381–392CrossRefPubMedGoogle Scholar
  20. 20.
    Murakami Y, Takamatsu H, Taki J et al (2004) 18F-labelled Annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imaging 31:469–474CrossRefPubMedGoogle Scholar
  21. 21.
    Yagle KJ, Eary JF, Tait JF et al (2005) Evaluation of 18F-Annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 46:658–666PubMedGoogle Scholar
  22. 22.
    Zhang F, Zhu L, Liu G et al (2011) Multimodality imaging of tumor response to Doxil. Theranostics 1:302–309CrossRefPubMedGoogle Scholar
  23. 23.
    Carey TE, Van Dyke DL, Worsham MJ et al (1989) Characterization of human laryngeal primary and metastatic squamous cell carcinoma cell lines UM-SCC-17A and UM-SCC-17B. Cancer Res 49:6098–6107PubMedGoogle Scholar
  24. 24.
    Logue SE, Elgendy M, Martin SJ (2009) Expression, purification and use of recombinant Annexin V for the detection of apoptotic cells. Nat Protoc 4:1383–1395CrossRefPubMedGoogle Scholar
  25. 25.
    Jacobson O, Weiss ID, Kiesewetter DO et al (2010) PET of tumor CXCR4 expression with 4-18F-T140. J Nucl Med 51:1796–1804CrossRefPubMedGoogle Scholar
  26. 26.
    Beer AJ, Kessler H, Wester HJ et al (2011) PET imaging of integrin alphavbeta3 expression. Theranostics 1:48–57CrossRefPubMedGoogle Scholar
  27. 27.
    De Saint-Hubert M, Mottaghy FM, Vunckx K et al (2010) Site-specific labeling of 'second generation' Annexin V with 99mTc(CO)3 for improved imaging of apoptosis in vivo. Bioorg Med Chem 18:1356–1363CrossRefPubMedGoogle Scholar
  28. 28.
    Sun X, Yan Y, Liu S et al (2010) 18F-FPPRGD2 and 18F-FDG PET of response to abraxane therapy. J Nucl Med 52:140–146CrossRefPubMedGoogle Scholar
  29. 29.
    Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216CrossRefPubMedGoogle Scholar
  30. 30.
    Green AM, Steinmetz ND (2002) Monitoring apoptosis in real time. Cancer J 8:82–92CrossRefPubMedGoogle Scholar
  31. 31.
    Grierson JR, Yagle KJ, Eary JF et al (2004) Production of [F-18]fluoroannexin for imaging apoptosis with PET. Bioconjug Chem 15:373–379CrossRefPubMedGoogle Scholar
  32. 32.
    Blankenberg F (2002) To scan or not to scan, it is a question of timing: technetium-99m-annexin V radionuclide imaging assessment of treatment efficacy after one course of chemotherapy. Clin Cancer Res 8:2757–2758PubMedGoogle Scholar
  33. 33.
    Niu G, Li Z, Xie J et al (2009) PET of EGFR antibody distribution in head and neck squamous cell carcinoma models. J Nucl Med 50:1116–1123CrossRefPubMedGoogle Scholar
  34. 34.
    Niu G, Sun X, Cao Q et al (2010) Cetuximab-based immunotherapy and radioimmunotherapy of head and neck squamous cell carcinoma. Clin Cancer Res 16:2095–2105CrossRefPubMedGoogle Scholar
  35. 35.
    Blankenberg FG, Naumovski L, Tait JF et al (2001) Imaging cyclophosphamide-induced intramedullary apoptosis in rats using 99mTc-radiolabeled Annexin V. J Nucl Med 42:309–316PubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2012

Authors and Affiliations

  • Shuo Hu
    • 1
    • 2
  • Dale O. Kiesewetter
    • 2
  • Lei Zhu
    • 2
  • Ning Guo
    • 2
  • Haokao Gao
    • 2
  • Gang Liu
    • 2
    • 3
  • Naoki Hida
    • 2
  • Lixin Lang
    • 2
  • Gang Niu
    • 2
    Email author
  • Xiaoyuan Chen
    • 2
    Email author
  1. 1.Department of Nuclear Medicine, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaUSA
  3. 3.Sichuan Key Laboratory of Medical Imaging, Department of RadiologyAffiliated Hospital of North Sichuan Medical CollegeNanchongChina

Personalised recommendations