Molecular Imaging and Biology

, Volume 14, Issue 3, pp 336–347 | Cite as

An Engineered Cysteine-Modified Diabody for Imaging Activated Leukocyte Cell Adhesion Molecule (ALCAM)-Positive Tumors

  • Katelyn E. McCabe
  • Bin Liu
  • James D. Marks
  • James S. Tomlinson
  • Hong Wu
  • Anna M. Wu
Research Article



The purpose of this study was to generate and evaluate a positron emission tomography (PET) radiotracer targeting activated leukocyte cell adhesion molecule (ALCAM).


A human anti-ALCAM single chain variable fragment was reformatted to produce a covalent dimer, termed a cys-diabody (CysDb). Purified CysDb was characterized by gel electrophoresis and size exclusion chromatography, and immunoreactivity was assessed by flow cytometry and immunofluorescence. Targeting and imaging of ALCAM-positive tumors using 64Cu-DOTA-CysDb were evaluated in mice bearing human pancreatic adenocarcinoma xenografts (HPAF-II or BxPC-3).


CysDb binds specifically to ALCAM-positive cells in vitro with an apparent affinity in the range of 1–3 nM. MicroPET images at 4 h showed specific targeting of positive tumors in vivo, a finding confirmed by biodistribution analysis, with positive/negative tumor ratios of 1.9 ± 0.6 and 2.4 ± 0.6, and positive tumor/blood ratios of 2.5 ± 0.9 and 2.9 ± 0.6 (HPAF-II and BxPC-3, respectively).


Successful imaging with 64Cu-DOTA-CysDb in animal models suggests further investigation of ALCAM as an imaging biomarker is warranted.

Key words

Activated leukocyte cell adhesion molecule (ALCAM) Biomarker Diabody Pancreatic cancer Positron emission tomography (PET) 



Funding support was provided by the National Cancer Institute through the UCLA in vivo Cellular and Molecular Imaging Center (NIH CA 86306), the Stanford Center for Nanotechnology Excellence (NIH CA 119367), and the UCLA Small Animal Imaging Resource Program (NIH CA 92865), and a Dr. Ursula Mandel Scholarship. We thank Dr. Noah Federman for his help with the immunofluorescence experiments and Waldemar Ladno for his assistance with the animal studies. We would also like to acknowledge the UCLA Translational Pathology Core Laboratory for their antibody optimization and immunostaining services. Flow cytometry was performed in the UCLA Jonsson Comprehensive Cancer Center (JCCC) and Center for AIDS Research Flow Cytometry Core Facility, supported by NIH awards CA-16042 and AI-28697.

Conflict of Interest

Anna M. Wu owns stock and is a consultant to ImaginAb, Inc. James D. Marks own stock, is a member of the Scientific Advisory Board, and is a consultant to ImaginAb, Inc. The other authors declare they have no conflicts of interest.


  1. 1.
    Wu AM (2009) Antibodies and antimatter: the resurgence of immuno-PET. J Nucl Med 50:2–5PubMedCrossRefGoogle Scholar
  2. 2.
    Wu AM, Olafsen T (2008) Antibodies for molecular imaging of cancer. Cancer J 14:191–197PubMedCrossRefGoogle Scholar
  3. 3.
    Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146PubMedCrossRefGoogle Scholar
  4. 4.
    Cai W, Olafsen T, Zhang X et al (2007) PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 48:304–310PubMedCrossRefGoogle Scholar
  5. 5.
    Olafsen T, Cheung CW, Yazaki PJ et al (2004) Covalent disulfide-linked anti-CEA diabody allows site-specific conjugation and radiolabeling for tumor targeting applications. Protein Eng Des Sel 17:21–27PubMedCrossRefGoogle Scholar
  6. 6.
    Sirk SJ, Olafsen T, Barat B, Bauer KB, Wu AM (2008) Site-specific, thiol-mediated conjugation of fluorescent probes to cysteine-modified diabodies targeting CD20 or HER2. Bioconjug Chem 19:2527–2534PubMedCrossRefGoogle Scholar
  7. 7.
    King JA, Ofori-Acquah SF, Stevens T, Al-Mehdi AB, Fodstad O, Jiang WG (2004) Activated leukocyte cell adhesion molecule in breast cancer: prognostic indicator. Breast Cancer Res 6:R478–R487PubMedCrossRefGoogle Scholar
  8. 8.
    Burkhardt M, Mayordomo E, Winzer KJ et al (2006) Cytoplasmic overexpression of ALCAM is prognostic of disease progression in breast cancer. J Clin Pathol 59:403–409PubMedCrossRefGoogle Scholar
  9. 9.
    Kulasingam V, Zheng Y, Soosaipillai A, Leon AE, Gion M, Diamandis EP (2009) Activated leukocyte cell adhesion molecule: a novel biomarker for breast cancer. Int J Cancer 125:9–14PubMedCrossRefGoogle Scholar
  10. 10.
    Weichert W, Knosel T, Bellach J, Dietel M, Kristiansen G (2004) ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. J Clin Pathol 57:1160–1164PubMedCrossRefGoogle Scholar
  11. 11.
    Sawhney M, Matta A, Macha MA et al (2009) Cytoplasmic accumulation of activated leukocyte cell adhesion molecule is a predictor of disease progression and reduced survival in oral cancer patients. Int J Cancer 124:2098–2105PubMedCrossRefGoogle Scholar
  12. 12.
    Mezzanzanica D, Fabbi M, Bagnoli M et al (2008) Subcellular localization of activated leukocyte cell adhesion molecule is a molecular predictor of survival in ovarian carcinoma patients. Clin Cancer Res 14:1726–1733PubMedCrossRefGoogle Scholar
  13. 13.
    Chen R, Yi EC, Donohoe S et al (2005) Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology 129:1187–1197PubMedCrossRefGoogle Scholar
  14. 14.
    Kristiansen G, Pilarsky C, Wissmann C et al (2003) ALCAM/CD166 is up-regulated in low-grade prostate cancer and progressively lost in high-grade lesions. Prostate 54:34–43PubMedCrossRefGoogle Scholar
  15. 15.
    Kristiansen G, Pilarsky C, Wissmann C et al (2005) Expression profiling of microdissected matched prostate cancer samples reveals CD166/MEMD and CD24 as new prognostic markers for patient survival. J Pathol 205:359–376PubMedCrossRefGoogle Scholar
  16. 16.
    Patel DD, Wee SF, Whichard LP et al (1995) Identification and characterization of a 100-kD ligand for CD6 on human thymic epithelial cells. J Exp Med 181:1563–1568PubMedCrossRefGoogle Scholar
  17. 17.
    Bowen MA, Patel DD, Li X et al (1995) Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med 181:2213–2220PubMedCrossRefGoogle Scholar
  18. 18.
    van Kempen LC, Meier F, Egeblad M et al (2004) Truncation of activated leukocyte cell adhesion molecule: a gateway to melanoma metastasis. J Invest Dermatol 122:1293–1301PubMedCrossRefGoogle Scholar
  19. 19.
    van Kilsdonk JW, Wilting RH, Bergers M et al (2008) Attenuation of melanoma invasion by a secreted variant of activated leukocyte cell adhesion molecule. Cancer Res 68:3671–3679PubMedCrossRefGoogle Scholar
  20. 20.
    Liu B, Conrad F, Cooperberg MR, Kirpotin DB, Marks JD (2004) Mapping tumor epitope space by direct selection of single-chain Fv antibody libraries on prostate cancer cells. Cancer Res 64:704–710PubMedCrossRefGoogle Scholar
  21. 21.
    Liu B, Conrad F, Roth A, Drummond DC, Simko JP, Marks JD (2007) Recombinant full-length human IgG1s targeting hormone-refractory prostate cancer. J Mol Med 85:1113–1123PubMedCrossRefGoogle Scholar
  22. 22.
    Roth A, Drummond DC, Conrad F et al (2007) Anti-CD166 single chain antibody-mediated intracellular delivery of liposomal drugs to prostate cancer cells. Mol Cancer Ther 6:2737–2746PubMedCrossRefGoogle Scholar
  23. 23.
    Galfre G, Milstein C (1981) Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 73:3–46PubMedCrossRefGoogle Scholar
  24. 24.
    Olafsen T, Gu Z, Sherman MA et al (2007) Targeting, imaging, and therapy using a humanized antiprostate stem cell antigen (PSCA) antibody. J Immunother 30:396–405PubMedCrossRefGoogle Scholar
  25. 25.
    Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology (NY) 10:169–175CrossRefGoogle Scholar
  26. 26.
    Olafsen T, Kenanova VE, Sundaresan G et al (2005) Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 65:5907–5916PubMedCrossRefGoogle Scholar
  27. 27.
    Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137PubMedCrossRefGoogle Scholar
  28. 28.
    Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774PubMedCrossRefGoogle Scholar
  29. 29.
    Leyton JV, Olafsen T, Sherman MA et al (2009) Engineered humanized diabodies for microPET imaging of prostate stem cell antigen-expressing tumors. Protein Eng Des Sel 22:209–216PubMedCrossRefGoogle Scholar
  30. 30.
    Schmidt MM, Wittrup KD (2009) A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther 8:2861–2871PubMedCrossRefGoogle Scholar
  31. 31.
    Eder M, Knackmuss S, Le Gall F et al (2010) (68)Ga-labelled recombinant antibody variants for immuno-PET imaging of solid tumours. Eur J Nucl Med Mol Imaging 37:1397–1407PubMedCrossRefGoogle Scholar
  32. 32.
    Schneider DW, Heitner T, Alicke B et al (2009) In vivo biodistribution, PET imaging, and tumor accumulation of 86Y- and 111In-antimindin/RG-1, engineered antibody fragments in LNCaP tumor-bearing nude mice. J Nucl Med 50:435–443PubMedCrossRefGoogle Scholar
  33. 33.
    Anderson CJ, Ferdani R (2009) Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm 24:379–393PubMedCrossRefGoogle Scholar
  34. 34.
    Shokeen M, Anderson CJ (2009) Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Acc Chem Res 42:832–841PubMedCrossRefGoogle Scholar
  35. 35.
    Yazaki PJ, Wu AM, Tsai SW et al (2001) Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and t84.66 minibody: comparison to radioiodinated fragments. Bioconjug Chem 12:220–228PubMedCrossRefGoogle Scholar
  36. 36.
    Ahlgren S, Wallberg H, Tran TA et al (2009) Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine. J Nucl Med 50:781–789PubMedCrossRefGoogle Scholar
  37. 37.
    Arano Y (1998) Strategies to reduce renal radioactivity levels of antibody fragments. Q J Nucl Med 42:262–270PubMedGoogle Scholar
  38. 38.
    Piazza T, Cha E, Bongarzone I et al (2005) Internalization and recycling of ALCAM/CD166 detected by a fully human single-chain recombinant antibody. J Cell Sci 118:1515–1525PubMedCrossRefGoogle Scholar
  39. 39.
    Liu K, Lepin EJ, Wang M-W, Guo F, Lin W-Y, Chen Y-C, Sirk SJ, Olma S, Phelps ME, Zhao X-Z, Tseng H-R, van Dam RM, Wu AM, Shen CK-F (2011) Microfluidic-based 18F labeling of biomolecules for immuno-positron emission tomography. Molecular Imaging 10:168–176. doi: 10.2310/7290.2010.00043 PubMedGoogle Scholar
  40. 40.
    Horner MJ RL, Krapcho M, Neyman N, Aminou R, Howlader N, Altekruse SF, Feuer EJ, Huang L, Mariotto A, Miller BA, Lewis DR, Eisner MP, Stinchcomb DG, Edwards BK (eds) SEER Cancer Statistics Review, 1975–2006, National Cancer Institute. Bethesda, MD, based on November 2008 SEER data submission, posted to the SEER web site, 2009. Available at
  41. 41.
    Parsons CM, Sutcliffe JL, Bold RJ (2008) Preoperative evaluation of pancreatic adenocarcinoma. J Hepatobiliary Pancreat Surg 15:429–435PubMedCrossRefGoogle Scholar
  42. 42.
    Foss CA, Fox JJ, Feldmann G et al (2007) Radiolabeled anti-claudin 4 and anti-prostate stem cell antigen: initial imaging in experimental models of pancreatic cancer. Mol Imaging 6:131–139PubMedGoogle Scholar
  43. 43.
    Hausner SH, Abbey CK, Bold RJ et al (2009) Targeted in vivo imaging of integrin alphavbeta6 with an improved radiotracer and its relevance in a pancreatic tumor model. Cancer Res 69:5843–5850PubMedCrossRefGoogle Scholar
  44. 44.
    Strickland LA, Ross J, Williams S et al (2009) Preclinical evaluation of carcinoembryonic cell adhesion molecule (CEACAM) 6 as potential therapy target for pancreatic adenocarcinoma. J Pathol 218:380–390PubMedCrossRefGoogle Scholar
  45. 45.
    Vervoort L, Burvenich I, Staelens S et al (2010) Preclinical evaluation of monoclonal antibody 14C5 for targeting pancreatic cancer. Cancer Biother Radiopharm 25:193–205PubMedCrossRefGoogle Scholar
  46. 46.
    Mariani G, Molea N, Bacciardi D et al (1995) Initial tumor targeting, biodistribution, and pharmacokinetic evaluation of the monoclonal antibody PAM4 in patients with pancreatic cancer. Cancer Res 55:5911s–5915sPubMedGoogle Scholar
  47. 47.
    Kahlert C, Weber H, Mogler C et al (2009) Increased expression of ALCAM/CD166 in pancreatic cancer is an independent prognostic marker for poor survival and early tumour relapse. Br J Cancer 101:457–464PubMedCrossRefGoogle Scholar
  48. 48.
    Wiiger MT, Gehrken HB, Fodstad O, Maelandsmo GM, Andersson Y (2010) A novel human recombinant single-chain antibody targeting CD166/ALCAM inhibits cancer cell invasion in vitro and in vivo tumour growth. Cancer Immunol Immunother 59:1665–1674PubMedCrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2011

Authors and Affiliations

  1. 1.Crump Institute for Molecular Imaging, Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at University of California, Los AngelesLos AngelesUSA
  2. 2.Department of AnesthesiaUniversity of California, San FranciscoSan FranciscoUSA
  3. 3.Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUSA
  4. 4.Division of Surgical OncologyDavid Geffen School of Medicine at University of California, Los AngelesLos AngelesUSA
  5. 5.Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at University of California, Los AngelesLos AngelesUSA

Personalised recommendations