Molecular Imaging and Biology

, Volume 14, Issue 1, pp 70–78 | Cite as

Positron Emission Tomography of Copper Metabolism in the Atp7b−/− Knock-out Mouse Model of Wilson’s Disease

  • Fangyu Peng
  • Svetlana Lutsenko
  • Xiankai Sun
  • Otto Muzik
Research Article



This study aims to determine feasibility and utility of copper-64(II) chloride (64CuCl2) as a tracer for positron emission tomography (PET) of copper metabolism imbalance in human Wilson’s disease (WD).


Atp7b−/− mice, a mouse model of human WD, were injected with 64CuCl2 intravenously and subjected to PET scanning using a hybrid PET-CT (computerized tomography) scanner, with the wild-type C57BL mice as a normal control. Quantitative PET analysis was performed to determine biodistribution of 64Cu radioactivity and radiation dosimetry estimates of 64Cu were calculated for PET of copper metabolism in humans.


Dynamic PET analysis revealed increased accumulation and markedly reduced clearance of 64Cu from the liver of the Atp7b−/− mice, compared to hepatic uptake and clearance of 64Cu in the wild-type C57BL mice. Kinetics of copper clearance and retention was also altered for kidneys, heart, and lungs in the Atp7b−/− mice. Based on biodistribution of 64Cu in wild-type C57BL mice, radiation dosimetry estimates of 64Cu in normal human subjects were obtained, showing an effective dose (ED) of 32.2 μ (micro)Sv/MBq (weighted dose over 22 organs) and the small intestine as the critical organ for radiation dose (61 μGy/MBq for males and 69 μGy/MBq for females). Radiation dosimetry estimates for the patients with WD, based on biodistribution of 64Cu in the Atp7b−/− mice, showed a similar ED of 32.8 μ (micro)Sv/MBq (p = 0.53), with the liver as the critical organ for radiation dose (120 μSv/MBq for male and 161 μSv/MBq for female).


Quantitative PET analysis demonstrates abnormal copper metabolism in the mouse model of WD with improved time–resolution. Human radiation dosimetry estimates obtained in this preclinical study encourage direct radiation dosimetry of 64CuCl2 in human subjects. The results suggest feasibility of utilizing 64CuCl2 as a tracer for noninvasive assessment of copper metabolism in WD with PET.

Key words

Copper metabolism Wilson’s disease ATP7B copper transporter Positron emission tomography Copper-64 (II) chloride Radiation dosimetry 


  1. 1.
    Olivares M, Uauy R (1996) Copper as an essential nutrient. Am J Clin Nutr 63(5):791S–6SPubMedGoogle Scholar
  2. 2.
    Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67(5 Suppl):952S–959SPubMedGoogle Scholar
  3. 3.
    Cartwright GE, Wintrobe MM (1964) Copper metabolism in normal subjects. Am J Clin Nutr 14:224–32PubMedGoogle Scholar
  4. 4.
    Turnlund JR (1998) Human whole-body copper metabolism. Am J Clin Nutr 67(5):960S–964SPubMedGoogle Scholar
  5. 5.
    Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180PubMedCrossRefGoogle Scholar
  6. 6.
    Lutsenko S (2010) Human copper homeostasis: a network of interconnected pathways. Curr Opin Chem Biol 14:1–7CrossRefGoogle Scholar
  7. 7.
    Mercer JF (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7:64–69PubMedCrossRefGoogle Scholar
  8. 8.
    Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5:327–337PubMedCrossRefGoogle Scholar
  9. 9.
    Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B et al (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5:344–350PubMedCrossRefGoogle Scholar
  10. 10.
    Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting. Nat Genet 3:7–13PubMedCrossRefGoogle Scholar
  11. 11.
    Mercer JF, Livingston J, Hall B, Paynter JA, Begy C, Chandrasekharappa S et al (1993) Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet 3:20–25PubMedCrossRefGoogle Scholar
  12. 12.
    Chelly J, Tumer Z, Tonnesen T, Petterson A, Ishikawa-Brush Y, Tommerup N et al (1993) Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 3:14–19PubMedCrossRefGoogle Scholar
  13. 13.
    Olivarez L, Caggana M, Pass KA, Ferguson P, Brewer GJ (2001) Estimate of the frequency of Wilson’s disease in the US Caucasian population: a mutation analysis approach. Ann Hum Genet 65:459–463PubMedCrossRefGoogle Scholar
  14. 14.
    Multhaup G (1997) Amyloid precursor protein, copper and Alzheimer’s disease. Biomed Pharmacother 51(3):105–11PubMedCrossRefGoogle Scholar
  15. 15.
    Theophanides T, Anastassopoulou J (2002) Copper and carcinogenesis. Crit Rev Oncol Hematol 1:57–64CrossRefGoogle Scholar
  16. 16.
    Kusleikaite M, Masironi R (1996) Trace elements in prognosis of myocardial infarction and sudden coronary death. J Trace Elem Exp Med 9(2):57–62CrossRefGoogle Scholar
  17. 17.
    Owen CA Jr (1964) Distribution of copper in the rat. Am J Physiol 207:446–448PubMedGoogle Scholar
  18. 18.
    Owen CA Jr (1965) Metabolism of radiocopper (Cu64) in the rat. Am J Physiol 209:900–904PubMedGoogle Scholar
  19. 19.
    Dunn MA, Green MH, Leach RM Jr (1991) Kinetics of copper metabolism in rats: a compartmental model. Am J Physiol 261:E115–125PubMedGoogle Scholar
  20. 20.
    Que EL, Chang CJ (2006) A smart magnetic resonance contrast agent for selective copper sensing. J Am Chem Soc 128:15942–15943PubMedCrossRefGoogle Scholar
  21. 21.
    Que EL, Gianolio E, Baker SL, Wong AP, Aime S, Chang CJ (2009) Copper-responsive magnetic resonance imaging contrast agents. J Am Chem Soc 131(24):8527–8536PubMedCrossRefGoogle Scholar
  22. 22.
    Chaudhry AF, Verma M, Morgan MT, Henary MM, Siegel N, Hales JM et al (2010) Kinetically controlled photoinduced electron transfer switching in Cu(I)-responsive fluorescent probes. J Am Chem Soc 132(2):737–747PubMedCrossRefGoogle Scholar
  23. 23.
    Domaille DW, Zeng L, Chang CJ (2010) Visualizing ascorbate-triggered release of labile copper within living cells using a ratiometric fluorescent sensor. J Am Chem Soc 132(4):1194–1195PubMedCrossRefGoogle Scholar
  24. 24.
    Blower PJ, Lewis JS, Zweit J (1996) Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol 23:957–980PubMedCrossRefGoogle Scholar
  25. 25.
    Peng F, Xin Lu, Janisse J, Muzik O, Shields AF (2006) Positron emission tomography of human prostate cancer xenografts in mice with increased uptake of copper (II)-64 chloride. J Nucl Med 47(10):1649–1652PubMedGoogle Scholar
  26. 26.
    Liu J, Hajibeigi A, Ren G, Lin M, Siyambalapitiyage W, Liu Z et al (2009) Retention of the radiotracers 64Cu-ATSM and 64Cu-PTSM in human and murine tumors is influenced by MDR1 protein expression. J Nucl Med 50:1332–1339PubMedCrossRefGoogle Scholar
  27. 27.
    Stabin MG (1996) MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37:538–46PubMedGoogle Scholar
  28. 28.
    Stabin MB, Siegel JA (2003) Physical models and dose factors for use in internal dose assessment. Health Phys 85:294–310PubMedCrossRefGoogle Scholar
  29. 29.
    Osborn SB, Szaz KF, Walshe JM (1969) Studies with radioactive copper (64Cu and 67Cu): abdominal scintiscans in patients with Wilson’s disease. Q J Med 38:467–474PubMedGoogle Scholar
  30. 30.
    Walshe JM, Potter G (1977) The pattern of the whole body distribution of radioactive copper (67Cu, 64Cu) in Wilson’s disease and various control groups. Q J Med 46:445–462PubMedGoogle Scholar
  31. 31.
    Hays MT, Watson EE, Thomas SR, Stabin (2002) Radiation absorbed dose estimates from 18 F-FDG. J Nucl Med 43:210–214PubMedGoogle Scholar
  32. 32.
    Bush JA, Mahoney JP, Markowitz H, Gubler CJ, Cartwright GE, Wintrobe MM (1955) Studies on copper metabolism. XVI. Radioactive copper studies in normal subjects and in patients with hepatolenticular degeneration. J Clin Invest 34:1766–1778PubMedCrossRefGoogle Scholar
  33. 33.
    Skromne-Kadlubik G, Diaz JF, Celis C (1975) Basal ganglia scans in the human. J Nucl Med 16(8):787–788PubMedGoogle Scholar
  34. 34.
    Bissig KD, Honer M, Zimmermann K, Summer KH, Solioz M (2005) Whole animal copper flux assessed by positron emission tomography in the Long–Evans cinnamon rat—a feasibility study. Biometals 18(1):83–88PubMedCrossRefGoogle Scholar
  35. 35.
    Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR (1993) Anatometabolic tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med 34:1190–1197PubMedGoogle Scholar
  36. 36.
    Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14(4):459–465PubMedCrossRefGoogle Scholar
  37. 37.
    Huster D, Finegold MJ, Morgan CT, Burkhead JL, Nixon R, Vanderwerf SM, Gilliam CT, Lutsenko S (2006) Consequences of copper accumulation in the livers of the Atp7b-/(Wilson disease gene) knockout mice. Am J Pathol 168(2):423–434PubMedCrossRefGoogle Scholar
  38. 38.
    Lee SH, Lancey R, Montaser A, Madani N, Linder MC (1993) Ceruloplasmin and copper transport during the latter part of gestation in the rat. Proc Soc Exp Biol Med 203(4):428–39PubMedGoogle Scholar
  39. 39.
    Harris ZL, Durley AP, Man TK, Gitlin JD (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci USA 96(19):10812–10817PubMedCrossRefGoogle Scholar
  40. 40.
    Linz R, Barnes NL, Zimnicka AM, Kaplan JH, Eipper B, Lutsenko S (2008) The intracellular targeting of copper-transporting ATPase ATP7A in a normal and ATP7b −/− kidney. Am J Physiol Renal Electrolyte Physiol 294(1):F53–61CrossRefGoogle Scholar
  41. 41.
    Buiakova OI, Xu J, Lutsenko S, Zeitlin S, Das K, Das S, Ross BM, Mekios C, Scheinberg IH, Gilliam TC (1999) Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum Mol Genet 8(9):1665–71PubMedCrossRefGoogle Scholar
  42. 42.
    Li Y, Wang L, Schuschke DA, Zhou Z, Saari JT, Kang YJ (2005) Marginal dietary copper restriction induces cardiomyopathy in rats. J Nutr 135(9):2130–2136PubMedGoogle Scholar
  43. 43.
    Juhasz-Pocsine K, Rudnicki SA, Archer RL, Harik SI (2007) Neurologic complications of gastric bypass surgery for morbid obesity. Neurology 68(21):1843–1850PubMedCrossRefGoogle Scholar
  44. 44.
    Turnlund JR, KeyesWR EHL, Acord LL (1989) Copper absorption and retention in young men at three levels of dietary copper using the stable isotope 65Cu. Am J Clin Nutr 49:870–878PubMedGoogle Scholar
  45. 45.
    Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D et al (2006) Impact of animal handling on the results of 18 F-FDG PET studies in mice. J Nucl Med 47:999–1006PubMedGoogle Scholar
  46. 46.
    Brewer GJ, Dick RD, Grover DK, LeClaire V, Tseng M, Wicha M et al (2000) Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: phase I study. Clin Cancer Res 6:1–10PubMedGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2011

Authors and Affiliations

  • Fangyu Peng
    • 1
    • 2
    • 3
  • Svetlana Lutsenko
    • 4
  • Xiankai Sun
    • 1
    • 2
  • Otto Muzik
    • 5
    • 6
  1. 1.Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Advanced Imaging Research CenterUniversity of Texas Southwestern Medical CenterDallasUSA
  3. 3.Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasUSA
  4. 4.Department of PhysiologyJohns Hopkins UniversityBaltimoreUSA
  5. 5.Carman & Ann Adams Department of PediatricsSchool of Medicine, Wayne State UniversityDetroitUSA
  6. 6.Department of RadiologySchool of Medicine, Wayne State UniversityDetroitUSA

Personalised recommendations