Molecular Imaging and Biology

, Volume 13, Issue 6, pp 1061–1066 | Cite as

In Vivo Bioluminescence Imaging of Inducible Nitric Oxide Synthase Gene Expression in Vascular Inflammation

  • Masahiro Terashima
  • Shoichi Ehara
  • Eugene Yang
  • Hisanori Kosuge
  • Philip S. Tsao
  • Thomas Quertermous
  • Christopher H. Contag
  • Michael V. McConnell
Brief Article

Abstract

Purpose

Inflammation plays a critical role in atherosclerosis and is associated with upregulation of inducible nitric oxide synthase (iNOS). We studied bioluminescence imaging (BLI) to track iNOS gene expression in a murine model of vascular inflammation.

Procedures

Macrophage-rich vascular lesions were induced by carotid ligation plus high-fat diet and streptozotocin-induced diabetes in 18 iNOS-luc reporter mice. In vivo iNOS expression was imaged serially by BLI over 14 days, followed by in situ BLI and histology.

Results

BLI signal from ligated carotids increased over 14 days (9.7 ± 4.4 × 103 vs. 4.4 ± 1.7 × 103 photons/s/cm2/sr at baseline, p < 0.001 vs. baseline, p < 0.05 vs. sham controls). Histology confirmed substantial macrophage infiltration, with iNOS and luciferase expression, only in ligated left carotid arteries and not controls.

Conclusions

BLI allows in vivo detection of iNOS expression in murine carotid lesions and may provide a valuable approach for monitoring vascular gene expression and inflammation in small animal models.

Key words

Vascular inflammation Inducible nitric oxide synthase Bioluminescence Macrophages Atherosclerosis 

References

  1. 1.
    Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874PubMedCrossRefGoogle Scholar
  2. 2.
    Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13–C18PubMedCrossRefGoogle Scholar
  3. 3.
    Wilcox JN, Subramanian RR, Sundell CL et al (1997) Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 17:2479–2488PubMedCrossRefGoogle Scholar
  4. 4.
    Hunter GC, Henderson AM, Westerband A et al (1999) The contribution of inducible nitric oxide and cytomegalovirus to the stability of complex carotid plaque. J Vasc Surg 30:36–49, discussion 50PubMedCrossRefGoogle Scholar
  5. 5.
    Behr-Roussel D, Rupin A, Sansilvestri-Morel P, Fabiani JN, Verbeuren TJ (2000) Histochemical evidence for inducible nitric oxide synthase in advanced but non-ruptured human atherosclerotic carotid arteries. Histochem J 32:41–51PubMedCrossRefGoogle Scholar
  6. 6.
    Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang N, Weber A, Li B et al (2003) An inducible nitric oxide synthase-luciferase reporter system for in vivo testing of anti-inflammatory compounds in transgenic mice. J Immunol 170:6307–6319PubMedGoogle Scholar
  8. 8.
    Lichtman AH, Clinton SK, Iiyama K et al (1999) Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semipurified diets with and without cholate. Arterioscler Thromb Vasc Biol 19:1938–1944PubMedCrossRefGoogle Scholar
  9. 9.
    Like AA, Rossini AA (1976) Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193:415–417PubMedCrossRefGoogle Scholar
  10. 10.
    Kumar A, Lindner V (1997) Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arterioscler Thromb Vasc Biol 17:2238–2244PubMedCrossRefGoogle Scholar
  11. 11.
    Tanaka M, Swijnenburg RJ, Gunawan F et al (2005) In vivo visualization of cardiac allograft rejection and trafficking passenger leukocytes using bioluminescence imaging. Circulation 112:I105–I110PubMedCrossRefGoogle Scholar
  12. 12.
    Davies JR, Rudd JH, Weissberg PL, Narula J (2006) Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 47:C57–C68PubMedCrossRefGoogle Scholar
  13. 13.
    Jaffer FA, Nahrendorf M, Sosnovik D et al (2006) Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 5:85–92PubMedGoogle Scholar
  14. 14.
    Tawakol A, Migrino RQ, Bashian GG et al (2006) In vivo 18 F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 48:1818–1824PubMedCrossRefGoogle Scholar
  15. 15.
    Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422PubMedGoogle Scholar
  16. 16.
    Hyafil F, Cornily JC, Feig JE et al (2007) Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 13:636–641PubMedCrossRefGoogle Scholar
  17. 17.
    Detmers PA, Hernandez M, Mudgett J et al (2000) Deficiency in inducible nitric oxide synthase results in reduced atherosclerosis in apolipoprotein E-deficient mice. J Immunol 165:3430–3435PubMedGoogle Scholar
  18. 18.
    Hayashi T, Matsui-Hirai H, Fukatsu A et al (2006) Selective iNOS inhibitor, ONO1714 successfully retards the development of high-cholesterol diet induced atherosclerosis by novel mechanism. Atherosclerosis 187:316–324PubMedCrossRefGoogle Scholar
  19. 19.
    Boyle JJ (2005) Macrophage activation in atherosclerosis: pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol 3:63–68PubMedCrossRefGoogle Scholar
  20. 20.
    Harmon KJ, Couper LL, Lindner V (2000) Strain-dependent vascular remodeling phenotypes in inbred mice. Am J Pathol 156:1741–1748PubMedCrossRefGoogle Scholar
  21. 21.
    Korshunov VA, Berk BC (2004) Strain-dependent vascular remodeling: the “Glagov phenomenon” is genetically determined. Circulation 110:220–226PubMedCrossRefGoogle Scholar
  22. 22.
    Kunjathoor VV, Wilson DL, LeBoeuf RC (1996) Increased atherosclerosis in streptozotocin-induced diabetic mice. J Clin Invest 97:1767–1773PubMedCrossRefGoogle Scholar
  23. 23.
    Hayek T, Hussein K, Aviram M et al (2005) Macrophage foam-cell formation in streptozotocin-induced diabetic mice: stimulatory effect of glucose. Atherosclerosis 183:25–33PubMedCrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Masahiro Terashima
    • 1
  • Shoichi Ehara
    • 1
  • Eugene Yang
    • 2
  • Hisanori Kosuge
    • 1
  • Philip S. Tsao
    • 1
  • Thomas Quertermous
    • 1
  • Christopher H. Contag
    • 3
    • 4
  • Michael V. McConnell
    • 1
  1. 1.Division of Cardiovascular MedicineStanford University School of MedicineStanfordUSA
  2. 2.Division of CardiologyUniversity of Washington School of MedicineSeattleUSA
  3. 3.Department of PediatricsStanford University School of MedicineStanfordUSA
  4. 4.Department Microbiology/ImmunologyStanford University School of MedicineStanfordUSA

Personalised recommendations