Molecular Imaging and Biology

, Volume 13, Issue 6, pp 1204–1214 | Cite as

Impact of Indium-111 Oxine Labelling on Viability of Human Mesenchymal Stem Cells In Vitro, and 3D Cell-Tracking Using SPECT/CT In Vivo

  • Franz Josef Gildehaus
  • Florian Haasters
  • Inga Drosse
  • Erika Wagner
  • Christian Zach
  • Wolf Mutschler
  • Paul Cumming
  • Peter Bartenstein
  • Matthias Schieker
Research Article

Abstract

Purpose

This study investigates the effects of 111In-oxine incorporation on human mesenchymal stem cells’ (hMSC) biology and viability, and the applicability of 111In-oxine for single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) monitoring of hMSC in vivo.

Procedures

HMSC were labelled with 10 Bq/cell. Cellular retention of radioactivity, cell survival, and migration were evaluated over 48 h. Metabolic activity was assessed over 14 days and the hMSC’s stem cell character was evaluated. Serial SPECT/CT was performed after intra-osseous injection to athymic rats over 48 h.

Results

Labelling efficiency was 25%, with 61% of incorporated 111In remaining in the hMSC at 48 h. The radiolabelling was without effect on cell viability, stem cell character, and plasticity, whereas metabolic activity and migration were significantly reduced. Grafted cells could be imaged in situ with SPECT/CT.

Conclusions

111In-oxine labelling moderately impaired hMSC’s functional integrity while preserving their stem cell character. Combined SPECT/CT imaging of 111In-oxine-labelled hMSC opens the possibility for non-invasive sequential monitoring of therapeutic stem cells.

Key words

Mesenchymal stem cells (MSC) 111In-oxine Radiolabelling Cytotoxicity Cell tracking Computed tomography 

References

  1. 1.
    Drosse I, Volkmer E, Capanna R et al (2008) Tissue engineering for bone defect healing: an update on a multi-component approach. Injury 39(Suppl 2):S9–S20PubMedCrossRefGoogle Scholar
  2. 2.
    Zimmermann WH, Melnychenko I, Wasmeier G et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458PubMedCrossRefGoogle Scholar
  3. 3.
    Petite H, Viateau V, Bensaid W et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963PubMedCrossRefGoogle Scholar
  4. 4.
    Wang C, Wang Z, Li A et al (2009) Repair of segmental bone-defect of goat’s tibia using a dynamic perfusion culture tissue engineering bone. J Biomed Mater Res A 92A:1145–1153Google Scholar
  5. 5.
    Zhou XZ, Leung VY, Dong QR et al (2008) Mesenchymal stem cell-based repair of articular cartilage with polyglycolic acid-hydroxyapatite biphasic scaffold. Int J Artif Organs 31:480–489PubMedGoogle Scholar
  6. 6.
    Badorff C, Brandes RP, Popp R et al (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107:1024–1032PubMedCrossRefGoogle Scholar
  7. 7.
    Kassem M (2006) Stem cells: potential therapy for age-related diseases. Ann NY Acad Sci 1067:436–442PubMedCrossRefGoogle Scholar
  8. 8.
    Liechty KW, MacKenzie TC, Shaaban AF et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286PubMedCrossRefGoogle Scholar
  9. 9.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  10. 10.
    Bruder SP, Jaiswal N, Ricalton NS et al (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 355:S247–S256PubMedCrossRefGoogle Scholar
  11. 11.
    Schantz JT, Hutmacher DW, Lam CX et al (2003) Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng 9(Suppl 1):S127–S139PubMedCrossRefGoogle Scholar
  12. 12.
    Xian CJ, Foster BK (2006) Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther 1:213–229PubMedCrossRefGoogle Scholar
  13. 13.
    Saldanha KJ, Piper SL, Ainslie KM, Kim HT, Majumdar S (2008) Magnetic resonance imaging of iron oxide labelled stem cells: applications to tissue engineering based regeneration of the intervertebral disc. Eur Cell Mater 16:17–25PubMedGoogle Scholar
  14. 14.
    Puppi J, Modo M (2009) Use of magnetic resonance imaging contrast agents to detect transplanted liver cells. Top Magn Reson Imaging 20:113–120PubMedCrossRefGoogle Scholar
  15. 15.
    Choi HO, Hwang KJ (1987) Mechanism of ionophoric transport of indium-111 cations through a lipid bilayer membrane. J Nucl Med 28:91–96PubMedGoogle Scholar
  16. 16.
    Bindslev L, Haack-Sorensen M, Bisgaard K et al (2006) Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33:1171–1177PubMedCrossRefGoogle Scholar
  17. 17.
    Nowak B, Weber C, Schober A et al (2007) Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells. Eur J Nucl Med Mol Imaging 34:715–721PubMedCrossRefGoogle Scholar
  18. 18.
    Brenner W, Aicher A, Eckey T et al (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45:512–518PubMedGoogle Scholar
  19. 19.
    Acton PD, Zhou R (2005) Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 49:349–360PubMedGoogle Scholar
  20. 20.
    Böcker W, Yin Z, Drosse I et al (2008) Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J Cell Mol Med 12:1347–1359CrossRefGoogle Scholar
  21. 21.
    Volkmer E, Drosse I, Otto S et al (2008) Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng A 14:1331–1340CrossRefGoogle Scholar
  22. 22.
    Gholamrezanezhad A, Mirpour S, Ardekani JM et al (2009) Cytotoxicity of 111In-oxine on mesenchymal stem cells: a time-dependent adverse effect. Nucl Med Commun 30:210–216PubMedCrossRefGoogle Scholar
  23. 23.
    Jin Y, Kong H, Stodilka RZ et al (2005) Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT. Phys Med Biol 50:4445–4455PubMedCrossRefGoogle Scholar
  24. 24.
    Bustamante J, Dock L, Vahter M, Fowler B, Orrenius S (1997) The semiconductor elements arsenic and indium induce apoptosis in rat thymocytes. Toxicology 118:129–136PubMedCrossRefGoogle Scholar
  25. 25.
    Fjälling M, Andersson P, Forssell-Aronsson E et al (1996) Systemic radionuclide therapy using indium-111-DTPA-D-Phe1-octreotide in midgut carcinoid syndrome. J Nucl Med 37:1519–1521PubMedGoogle Scholar
  26. 26.
    Martin RF, Bradley TR, Hodgson GS (1979) Cytotoxicity of an 125I-labeled DNA-binding compound that induces double-stranded DNA breaks. Cancer Res 39:3244–3247PubMedGoogle Scholar
  27. 27.
    Weaver AS, Su YP, Begun DL et al (2010) The effects of axial displacement on fracture callus morphology and MSC homing depend on the timing of application. Bone 47:41–48PubMedCrossRefGoogle Scholar
  28. 28.
    Mahmood A, Lu D, Wang L et al (2001) Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 49:1196–1203PubMedGoogle Scholar
  29. 29.
    Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRefGoogle Scholar
  30. 30.
    Assis AC, Carvalho JL, Jacoby BA et al (2010) Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 19:219–230PubMedCrossRefGoogle Scholar
  31. 31.
    Haasters F, Prall WC, Anz D et al (2009) Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. J Anat 214:759–767PubMedCrossRefGoogle Scholar
  32. 32.
    Schieker M, Pautke C, Haasters F et al (2007) Human mesenchymal stem cells at the single-cell level: simultaneous seven-colour immunofluorescence. J Anat 210:592–599PubMedCrossRefGoogle Scholar
  33. 33.
    Jaiswal RK, Jaiswal N, Bruder SP et al (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652PubMedCrossRefGoogle Scholar
  34. 34.
    Raimondo S, Penna C, Pagliaro P, Geuna S (2006) Morphological characterization of GFP stably transfected adult mesenchymal bone marrow stem cells. J Anat 208:3–12PubMedCrossRefGoogle Scholar
  35. 35.
    Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580PubMedCrossRefGoogle Scholar
  36. 36.
    Agriantonis DJ, Hall L, Wilson MA (2009) Utility of SPECT/CT as an adjunct to planar whole body I-131 imaging: liver metastasis from papillary thyroid cancer. Clin Nucl Med 34:247–248PubMedCrossRefGoogle Scholar
  37. 37.
    Keidar Z, Israel O, Krausz Y (2003) SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 33:205–218PubMedCrossRefGoogle Scholar
  38. 38.
    ten Berge RJ, Natarajan AT, Hardeman MR, van Royen EA, Schellekens PT (1983) Labeling with indium-111 has detrimental effects on human lymphocytes: concise communication. J Nucl Med 24:615–620PubMedGoogle Scholar
  39. 39.
    Kraitchman DL, Tatsumi M, Gilson WD et al (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112:1451–1461PubMedCrossRefGoogle Scholar
  40. 40.
    Shake JG, Gruber PJ, Baumgartner WA et al (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73:1919–1925PubMedCrossRefGoogle Scholar
  41. 41.
    Terrovitis JV, Bulte JW, Sarvananthan S et al (2006) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds-relevance to tissue engineering. Tissue Eng 12:2765–2775PubMedCrossRefGoogle Scholar
  42. 42.
    Liang SX, Tan TY, Gaudry L, Chong B (2010) Differentiation and migration of Sca1+/CD31- cardiac side population cells in a murine myocardial ischemic model. Int J Cardiol 138:40–49PubMedCrossRefGoogle Scholar
  43. 43.
    Lien CY, Chih-Yuan HK, Lee OK, Blunn GW, Su Y (2009) Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells. J Bone Miner Res 24:837–848PubMedCrossRefGoogle Scholar
  44. 44.
    Lan X, Yin X, Wang R, Liu Y, Zhang Y (2009) Comparative study of cellular kinetics of reporter probe [(131)I]FIAU in neonatal cardiac myocytes after transfer of HSV1-tk reporter gene with two vectors. Nucl Med Biol 36:207–213PubMedCrossRefGoogle Scholar
  45. 45.
    Roelants V, Labar D, de Meester C et al (2008) Comparison between adenoviral and retroviral vectors for the transduction of the thymidine kinase PET reporter gene in rat mesenchymal stem cells. J Nucl Med 49:1836–1844PubMedCrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Franz Josef Gildehaus
    • 2
  • Florian Haasters
    • 1
  • Inga Drosse
    • 1
  • Erika Wagner
    • 2
  • Christian Zach
    • 2
  • Wolf Mutschler
    • 1
  • Paul Cumming
    • 2
  • Peter Bartenstein
    • 2
  • Matthias Schieker
    • 1
  1. 1.Experimental Surgery and Regenerative Medicine, Department of SurgeryUniversity of Munich (LMU)MunichGermany
  2. 2.Department of Nuclear MedicineUniversity of Munich (LMU)MunichGermany

Personalised recommendations