Molecular Imaging and Biology

, Volume 13, Issue 5, pp 825–839 | Cite as

A New Nano-sized Iron Oxide Particle with High Sensitivity for Cellular Magnetic Resonance Imaging

  • Chih-Lung Chen
  • Haosen Zhang
  • Qing Ye
  • Wen-Yuan Hsieh
  • T. Kevin Hitchens
  • Hsin-Hsin Shen
  • Li Liu
  • Yi-Jen Wu
  • Lesley M. Foley
  • Shian-Jy Wang
  • Chien Ho
Research Article

Abstract

Purpose

In this study, we investigated the labeling efficiency and magnetic resonance imaging (MRI) signal sensitivity of a newly synthesized, nano-sized iron oxide particle (IOP) coated with polyethylene glycol (PEG), designed by Industrial Technology Research Institute (ITRI).

Procedures

Macrophages, bone-marrow-derived dendritic cells, and mesenchymal stem cells (MSCs) were isolated from rats and labeled by incubating with ITRI-IOP, along with three other iron oxide particles in different sizes and coatings as reference. These labeled cells were characterized with transmission electron microscopy (TEM), light and fluorescence microscopy, phantom MRI, and finally in vivo MRI and ex vivo magnetic resonance microscopy (MRM) of transplanted hearts in rats infused with labeled macrophages.

Results

The longitudinal (r1) and transverse (r2) relaxivities of ITRI-IOP are 22.71 and 319.2 s−1 mM−1, respectively. TEM and microscopic images indicate the uptake of multiple ITRI-IOP particles per cell for all cell types. ITRI-IOP provides sensitivity comparable or higher than the other three particles shown in phantom MRI. In vivo MRI and ex vivo MRM detect punctate spots of hypointensity in rejecting hearts, most likely caused by the accumulation of macrophages labeled by ITRI-IOP.

Conclusion

ITRI-IOP, the nano-sized iron oxide particle, shows high efficiency in cell labeling, including both phagocytic and non-phagocytic cells. Furthermore, it provides excellent sensitivity in T2*-weighted MRI, and thus can serve as a promising contrast agent for in vivo cellular MRI.

Key words

Iron oxide particles ITRI-IOP Cells In vitro labeling Cellular MRI Rat heart transplant model 

Abbreviations

BN rat

Brown Norway rat

DA rat

Dark Agouti rat

DLS

Dynamic light scattering

ECG

Electrocardiography

FACS

Fluorescent-activated cell sorting

FDA

Food and Drug Administration

MR

Magnetic resonance

MRI

Magnetic resonance imaging

MRM

Magnetic resonance microscopy

MPIO

Micron-sized superparamagnetic iron oxide particles

MSCs

Mesenchymal stem cells

PBS

Phosphate-buffered saline

PEG

Polyethylene glycol

POD

Post-operation day

r1

Longitudinal relaxivity

r2

Transverse relaxivity

RES

Reticuloendothelial system

SPIO

Superparamagnetic iron oxide particles

T1

Longitudinal relaxation time

T2

Transverse relaxation time

TEM

Transmission electron microscopy

TE

Echo time

TR

Repetition time

USPIO

Ultrasmall superparamagnetic iron oxide particles

References

  1. 1.
    Yeh TC, Zhang W, Ildstad ST, Ho C (1995) In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med 33(2):200–208PubMedCrossRefGoogle Scholar
  2. 2.
    Wu YL, Ye Q, Foley LM, Hitchens TK, Sato K, Williams JB, Ho C (2006) In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI. Proc Natl Acad Sci USA 103(6):1852–1857PubMedCrossRefGoogle Scholar
  3. 3.
    Kiessling F (2008) Noninvasive cell tracking. Handb Exp Pharmacol 185(Pt 2):305–321PubMedCrossRefGoogle Scholar
  4. 4.
    Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499PubMedCrossRefGoogle Scholar
  5. 5.
    Smirnov P (2009) Cellular magnetic resonance imaging using superparamagnetic anionic iron oxide nanoparticles: applications to in vivo trafficking of lymphocytes and cell-based anticancer therapy. Methods Mol Biol 512:333–353PubMedCrossRefGoogle Scholar
  6. 6.
    Baumjohann D, Hess A, Budinsky L, Brune K, Schuler G, Lutz MB (2006) In vivo magnetic resonance imaging of dendritic cell migration into the draining lymph nodes of mice. Eur J Immunol 36(9):2544–2555PubMedCrossRefGoogle Scholar
  7. 7.
    Daldrup-Link HE, Rudelius M, Piontek G, Metz S, Brauer R, Debus G, Corot C, Schlegel J, Link TM, Peschel C, Rummeny EJ, Oostendorp RA (2005) Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234(1):197–205PubMedCrossRefGoogle Scholar
  8. 8.
    Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH Jr, Bulte JW (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228(2):480–487PubMedCrossRefGoogle Scholar
  9. 9.
    Arbab AS, Bashaw LA, Miller BR, Jordan EK, Bulte JW, Frank JA (2003) Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76(7):1123–1130PubMedCrossRefGoogle Scholar
  10. 10.
    Kanno S, Wu YJ, Lee PC, Dodd SJ, Williams M, Griffith BP, Ho C (2001) Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 104(8):934–938PubMedCrossRefGoogle Scholar
  11. 11.
    Ye Q, Yang D, Williams M, Williams DS, Pluempitiwiriyawej C, Moura JM, Ho C (2002) In vivo detection of acute rat renal allograft rejection by MRI with USPIO particles. Kidney Int 61(3):1124–1135PubMedCrossRefGoogle Scholar
  12. 12.
    Ho C, Hitchens TK (2004) A non-invasive approach to detecting organ rejection by MRI: monitoring the accumulation of immune cells at the transplanted organ. Curr Pharm Biotechnol 5(6):551–566PubMedCrossRefGoogle Scholar
  13. 13.
    Penno E, Johnsson C, Johansson L, Ahlstrom H (2006) Macrophage uptake of ultra-small iron oxide particles for magnetic resonance imaging in experimental acute cardiac transplant rejection. Acta Radiol 47(3):264–271PubMedCrossRefGoogle Scholar
  14. 14.
    Hauger O, Grenier N, Deminere C, Lasseur C, Delmas Y, Merville P, Combe C (2007) USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: initial results in humans. Eur Radiol 17(11):2898–2907PubMedCrossRefGoogle Scholar
  15. 15.
    Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 101(30):10901–10906PubMedCrossRefGoogle Scholar
  16. 16.
    Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53(2):329–338PubMedCrossRefGoogle Scholar
  17. 17.
    Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10(2):186–191PubMedCrossRefGoogle Scholar
  18. 18.
    Montet-Abou K, Montet X, Weissleder R, Josephson L (2007) Cell internalization of magnetic nanoparticles using transfection agents. Mol Imaging 6(1):1–9PubMedGoogle Scholar
  19. 19.
    Ahrens ET, Feili-Hariri M, Xu H, Genove G, Morel PA (2003) Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn Reson Med 49(6):1006–1013PubMedCrossRefGoogle Scholar
  20. 20.
    Tai JH, Foster P, Rosales A, Feng B, Hasilo C, Martinez V, Ramadan S, Snir J, Melling CW, Dhanvantari S, Rutt B, White DJ (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes 55(11):2931–2938PubMedCrossRefGoogle Scholar
  21. 21.
    Walczak P, Ruiz-Cabello J, Kedziorek DA, Gilad AA, Lin S, Barnett B, Qin L, Levitsky H, Bulte JW (2006) Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomedicine 2(2):89–94PubMedCrossRefGoogle Scholar
  22. 22.
    Chang W-H, Hsieh W-Y, Huang H-H, Wang S-J. Biocompatible polymer and magnetic nanoparticles with biocompatibility. Patent Application Number: P54960092WO, data of filing: April 23, 2008Google Scholar
  23. 23.
    Dodd SJ, Williams M, Suhan JP, Williams DS, Koretsky AP, Ho C (1999) Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys J 76(1 Pt 1):103–109PubMedCrossRefGoogle Scholar
  24. 24.
    Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331(2):370–375PubMedCrossRefGoogle Scholar
  25. 25.
    Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1(3):1458–1461PubMedCrossRefGoogle Scholar
  26. 26.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63PubMedCrossRefGoogle Scholar
  27. 27.
    Shapiro EM, Sharer K, Skrtic S, Koretsky AP (2006) In vivo detection of single cells by MRI. Magn Reson Med 55(2):242–249PubMedCrossRefGoogle Scholar
  28. 28.
    Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19(12):1141–1147PubMedCrossRefGoogle Scholar
  29. 29.
    Schafer R, Kehlbach R, Wiskirchen J, Bantleon R, Pintaske J, Brehm BR, Gerber A, Wolburg H, Claussen CD, Northoff H (2007) Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide. Radiology 244(2):514–523PubMedCrossRefGoogle Scholar
  30. 30.
    Korosoglou G, Weiss RG, Kedziorek DA, Walczak P, Gilson WD, Schar M, Sosnovik DE, Kraitchman DL, Boston RC, Bulte JW, Weissleder R, Stuber M (2008) Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using “positive contrast” magnetic resonance imaging. J Am Coll Cardiol 52(6):483–491PubMedCrossRefGoogle Scholar
  31. 31.
    Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience 3(1):66–73PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561PubMedCrossRefGoogle Scholar
  33. 33.
    Hamm J, Pulito R, Benedetto S, Barberis L, Hirsch E, Poli V, Silengo L (2008) Magnetically enriched bone marrow-derived macrophages loaded in vitro with iron oxide can migrate to inflammation sites in mice. NMR Biomed 21(2):120–128PubMedCrossRefGoogle Scholar
  34. 34.
    Pouliquen D, Le Jeune JJ, Perdrisot R, Ermias A, Jallet P (1991) Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism. Magn Reson Imaging 9(3):275–283PubMedCrossRefGoogle Scholar
  35. 35.
    Majumdar S, Zoghbi SS, Gore JC (1990) Pharmacokinetics of superparamagnetic iron-oxide MR contrast agents in the rat. Invest Radiol 25(7):771–777PubMedCrossRefGoogle Scholar
  36. 36.
    Thorek DL, Tsourkas A (2008) Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29(26):3583–3590PubMedCrossRefGoogle Scholar
  37. 37.
    Choi H, Choi SR, Zhou R, Kung HF, Chen IW (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 11(9):996–1004PubMedCrossRefGoogle Scholar
  38. 38.
    Slotkin JR, Cahill KS, Tharin SA, Shapiro EM (2007) Cellular magnetic resonance imaging: nanometer and micrometer size particles for noninvasive cell localization. Neurotherapeutics 4(3):428–433PubMedCrossRefGoogle Scholar
  39. 39.
    Yeh TC, Zhang W, Ildstad ST, Ho C (1993) Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med 30(5):617–625PubMedCrossRefGoogle Scholar
  40. 40.
    Islam T, Wolf G (2009) The pharmacokinetics of the lymphotropic nanoparticle MRI contrast agent ferumoxtran-10. Cancer Biomark 5(2):69–73PubMedGoogle Scholar
  41. 41.
    Ye Q, Wu YL, Foley LM, Hitchens TK, Eytan DF, Shirwan H, Ho C (2008) Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles. Circulation 118(2):149–156PubMedCrossRefGoogle Scholar
  42. 42.
    Oude Engberink RD, van der Pol SM, Dopp EA, de Vries HE, Blezer EL (2007) Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 243(2):467–474PubMedCrossRefGoogle Scholar
  43. 43.
    Salaklang J, Steitz B, Finka A, O’Neil CP, Moniatte M, van der Vlies AJ, Giorgio TD, Hofmann H, Hubbell JA, Petri-Fink A (2008) Superparamagnetic nanoparticles as a powerful systems biology characterization tool in the physiological context. Angew Chem Int Ed Engl 47(41):7857–7860PubMedCrossRefGoogle Scholar
  44. 44.
    Matuszewski L, Persigehl T, Wall A, Meier N, Bieker R, Kooijman H, Tombach B, Mesters R, Berdel WE, Heindel W, Bremer C (2007) Assessment of bone marrow angiogenesis in patients with acute myeloid leukemia by using contrast-enhanced MR imaging with clinically approved iron oxides: initial experience. Radiology 242(1):217–224PubMedCrossRefGoogle Scholar
  45. 45.
    Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104(4):1217–1223PubMedCrossRefGoogle Scholar
  46. 46.
    Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24(6):1001–1011PubMedCrossRefGoogle Scholar
  47. 47.
    Yamazaki M, Ito T (1990) Deformation and instability in membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion. Biochemistry 29(5):1309–1314PubMedCrossRefGoogle Scholar
  48. 48.
    de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23(11):1407–1413PubMedCrossRefGoogle Scholar
  49. 49.
    Shapiro EM, Medford-Davis LN, Fahmy TM, Dunbar CE, Koretsky AP (2007) Antibody-mediated cell labeling of peripheral T cells with micron-sized iron oxide particles (MPIOs) allows single cell detection by MRI. Contrast Media Mol Imaging 2(3):147–153PubMedCrossRefGoogle Scholar
  50. 50.
    Tavill AS, Bacon BR (1986) Hemochromatosis: how much iron is too much? Hepatology 6(1):142–145PubMedCrossRefGoogle Scholar
  51. 51.
    Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 152(1):167–173PubMedGoogle Scholar
  52. 52.
    Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5(2):316–327PubMedCrossRefGoogle Scholar
  53. 53.
    Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42(6):463–478PubMedCrossRefGoogle Scholar
  54. 54.
    Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13(6):1266–1276PubMedGoogle Scholar
  55. 55.
    Di Marco M, Sadun C, Port M, Guilbert I, Couvreur P, Dubernet C (2007) Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomedicine 2(4):609–622PubMedGoogle Scholar
  56. 56.
    Luciani N, Wilhelm C, Gazeau F (2010) The role of cell-released microvesicles in the intercellular transfer of magnetic nanoparticles in the monocyte/macrophage system. Biomaterials 31(27):7061–7069PubMedCrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Chih-Lung Chen
    • 1
  • Haosen Zhang
    • 2
  • Qing Ye
    • 2
  • Wen-Yuan Hsieh
    • 3
  • T. Kevin Hitchens
    • 2
  • Hsin-Hsin Shen
    • 1
  • Li Liu
    • 2
  • Yi-Jen Wu
    • 2
  • Lesley M. Foley
    • 2
  • Shian-Jy Wang
    • 3
  • Chien Ho
    • 2
  1. 1.Biomedical Engineering Laboratories, Industrial Technology Research InstituteHsinchuTaiwan
  2. 2.Pittsburgh NMR Center for Biomedical Research and Department of Biological SciencesCarnegie Mellon UniversityPittsburghUSA
  3. 3.Material and Chemical Research Laboratories, Industrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations