Molecular Imaging and Biology

, Volume 13, Issue 6, pp 1163–1172

Trafficking of a Dual-Modality Magnetic Resonance and Fluorescence Imaging Superparamagnetic Iron Oxide-Based Nanoprobe to Lymph Nodes

  • Ambika Bumb
  • Celeste A. S. Regino
  • Jackson G. Egen
  • Marcelino Bernardo
  • Peter J. Dobson
  • Ronald N. Germain
  • Peter L. Choyke
  • Martin W. Brechbiel
Research Article

Abstract

Purpose

This study aims to develop and characterize the trafficking of a dual-modal agent that identifies primary draining or sentinel lymph node (LN).

Procedure

Herein, a dual-reporting silica-coated iron oxide nanoparticle (SCION) is developed. Nude mice were imaged by magnetic resonance (MR) and optical imaging and axillary LNs were harvested for histological analysis. Trafficking through lymphatics was observed with intravital and ex vivo confocal microscopy of popliteal LNs in B6-albino, CD11c-EYFP, and lys-EGFP transgenic mice.

Results

In vivo, SCION allows visualization of LNs. The particle’s size and surface functionality play a role in its passive migration from the intradermal injection site and its minimal uptake by CD11c+ dendritic cells and CD169+ and lys+ macrophages.

Conclusions

After injection, SCION passively migrates to LNs without macrophage uptake and then can be used to image LN(s) by MRI and fluorescence. Thus, SCION can potentially be developed for use in sentinel node resections or for intralymphatic drug delivery.

Key words

Nanoparticle Molecular imaging MRI Optical imaging Lymph node Superparamagnetic iron oxide 

Supplementary material

11307_2010_424_MOESM1_ESM.mpg (702 kb)
Video 1Flow through lymphatic vessel pre-, during, and immediately post-intradermal injection of SCION(AlexaFluor555). Immediate passive diffusion of agent into the exposed vessel leading from hind footpad to popliteal LN is observed in the CD11c-EYFP mouse. The imaged lymphatic vessel was on the upper flank of a blood vessel (black region). Emissions from tissue-resident CD11c+ dendritic cells (green) are overlaid with emissions of SCION(AlexaFluor555) (red). Images were collected every 10 s for 15 min and played at 5 frames/s. A shift in the image frame occurred at the time of injection into the footpad distal to the imaging site. (MPG 702 kb)
11307_2010_424_MOESM2_ESM.mpg (490 kb)
Video 2Flow through lymphatic vessel 24 h post-intradermal injection of SCION(AlexaFluor555). Punctate movement of SCION(AlexaFluor555) (red) is observed in the exposed vessel leading from hind footpad to popliteal LN in the CD11c-EYFP mouse. However, this cell-mediated migration from the injection site is not by CD11c+ dendritic cells (green), as the emissions do not co-localize. The dark region in the lower right corner of the video is a blood vessel. Images were collected every 10 s for 12 min and played at 5 frames/s. (MPG 490 kb)

References

  1. 1.
    Morton D, Chan A (2000) The concept of sentinel node localization: how it started. Semin Nucl Med 30:4–10PubMedCrossRefGoogle Scholar
  2. 2.
    Bass SS, Cox CE, Ku NN, Berman C, Reintgen DS (1999) The role of sentinel lymph node biopsy in breast cancer. J Am Coll Surg 189:183–194PubMedCrossRefGoogle Scholar
  3. 3.
    Scoggins CR, Chagpar AB, Martin RC, McMasters KM (2005) Should sentinel lymph-node biopsy be used routinely for staging melanoma and breast cancers? Nat Clin Pract Oncol 2:448–455PubMedCrossRefGoogle Scholar
  4. 4.
    Leong SP (2003) Selective sentinel lymphadenectomy for malignant melanoma. Surg Clin North Am 83:157–185PubMedCrossRefGoogle Scholar
  5. 5.
    Morita ET (2002) Lymphoscintigraphy in the detection of sentinel lymph nodes. Cancer Treat Res 111:9–37PubMedCrossRefGoogle Scholar
  6. 6.
    Barrett T, Choyke PL, Kobayashi H (2006) Imaging of the lymphatic system: new horizons. Contrast Media Mol Imaging 1:230–245PubMedCrossRefGoogle Scholar
  7. 7.
    Sharma R, Wendt JA, Rasmussen JC et al (2008) New horizons for imaging lymphatic function. Ann NY Acad Sci 1131:13–36PubMedCrossRefGoogle Scholar
  8. 8.
    Grosenick D, Wabnitz H, Rinneberg H, Moestra KT, Schlag PM (1999) Development of a time-domain optical mammograph and first in vivo applications. Appl Opt 38:2927–2943PubMedCrossRefGoogle Scholar
  9. 9.
    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317PubMedCrossRefGoogle Scholar
  10. 10.
    Keereweer S, Kerrebijn J, van Driel P et al (2010) Optical image-guided surgery—where do we stand? Mol Imaging Biol. doi:10.1007/s11307-010-0373-2
  11. 11.
    Andersson-Engels S, Wilson BC (1992) In vivo fluorescence in clinical oncology: fundamental and practical issues. J Cell Pharmacol 3:48–60Google Scholar
  12. 12.
    Wagnières GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68:603–632PubMedGoogle Scholar
  13. 13.
    De Grand AM, Frangioni JV (2003) An operational near-infrared fluorescence imaging system prototype for large animal surgery. Technol Cancer Res Treat 2:553–562PubMedGoogle Scholar
  14. 14.
    Tanaka E, Choi HS, Fujii H, Bawendi MG, Frangioni JV (2006) Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann Surg Oncol 13:1671–1681PubMedCrossRefGoogle Scholar
  15. 15.
    Bumb A, Regino CAS, Perkins MR et al (2010) Preparation and characterization of a magnetic and optical dual-modality molecular probe. Nanotechnology 21:175704PubMedCrossRefGoogle Scholar
  16. 16.
    Bumb A, Brechbiel MW, Choyke PL et al (2008) Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica. Nanotechnology 19:335601PubMedCrossRefGoogle Scholar
  17. 17.
    Kosaka N, Ogawa M, Sato N, Choyke PL, Kobayashi H (2009) In vivo real-time, multicolor, quantum dot lymphatic imaging. J Invest Dermatol 129:2818–2822PubMedCrossRefGoogle Scholar
  18. 18.
    Lindquist RL, Shakhar G, Dudziak D et al (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5:1243–1250PubMedCrossRefGoogle Scholar
  19. 19.
    Faust N, Varas F, Kelly LM, Heck S, Graf T (2000) Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96:719–726PubMedGoogle Scholar
  20. 20.
    Bárcena C, Sraa AK, Chaubeyb GS et al (2008) Zinc ferrite nanoparticles as MRI contrast agents. Chem Commun 19:2224–2226CrossRefGoogle Scholar
  21. 21.
    Lee J-H, Huh Y-M, Jun Y-W et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99PubMedCrossRefGoogle Scholar
  22. 22.
    Talanov VS, Regino CAS, Kobayashi H et al (2006) Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 6:1459–1463PubMedCrossRefGoogle Scholar
  23. 23.
    Gojova A, Guo B, Kota RS et al (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–409PubMedCrossRefGoogle Scholar
  24. 24.
    Shubayev VI, Pisanic Ii TR, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477PubMedCrossRefGoogle Scholar
  25. 25.
    Bellin MF, Roy C, Kinkel K et al (1998) Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles—initial clinical experience. Radiology 207:799–808PubMedGoogle Scholar
  26. 26.
    Elamanchili P, Diwan M, Cao M, Samuel J (2004) Characterization of poly(d, l-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22:2406–2412PubMedCrossRefGoogle Scholar
  27. 27.
    Manolova V, Flace A, Bauer M et al (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413PubMedCrossRefGoogle Scholar
  28. 28.
    Kobayashi H, Ogawa M, Kosaka N, Choyke PL, Urano Y (2009) Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimer-based optical agents. Nanomedicine 4:411–419PubMedCrossRefGoogle Scholar
  29. 29.
    Reddy ST, Swartz MA, Hubbell JA (2006) Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol 27:573–579PubMedCrossRefGoogle Scholar
  30. 30.
    Kim S, Lim YT, Soltesz EG et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97PubMedCrossRefGoogle Scholar
  31. 31.
    Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA (2006) In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release 112:26–34PubMedCrossRefGoogle Scholar
  32. 32.
    Kirby AC, Coles MC, Kaye PM (2009) Alveolar macrophages transport pathogens to lung draining lymph nodes. J Immunol 183:1983–1989PubMedCrossRefGoogle Scholar
  33. 33.
    Abadie V, Badell E, Douillard P et al (2005) Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106:1843–1850PubMedCrossRefGoogle Scholar
  34. 34.
    Ji R, Kurihara K, Kato S (2006) Lymphatic vascular endothelial hyaluronan receptor (LYVE)-1- and CCL21-positive lymphatic compartments in the diabetic thymus. Anat Sci Int 81:201–209PubMedCrossRefGoogle Scholar
  35. 35.
    Kraal G, Janse M (1986) Marginal metallophilic cells of the mouse spleen identified by a monoclonal antibody. Immunology 58:665–669PubMedGoogle Scholar
  36. 36.
    Junt T, Moseman EA, Iannacone M et al (2007) Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450:110–114PubMedCrossRefGoogle Scholar
  37. 37.
    Phan TG, Grigorova I, Okada T, Cyster JG (2007) Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8:992–1000PubMedCrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Ambika Bumb
    • 1
  • Celeste A. S. Regino
    • 2
  • Jackson G. Egen
    • 3
  • Marcelino Bernardo
    • 2
    • 4
  • Peter J. Dobson
    • 5
  • Ronald N. Germain
    • 3
  • Peter L. Choyke
    • 2
  • Martin W. Brechbiel
    • 1
    • 6
  1. 1.Radiation Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Molecular Imaging Program, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  3. 3.Laboratory of Immunology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA
  4. 4.SAIC-Frederick IncNCI-FrederickFrederickUSA
  5. 5.Oxford University Begbroke Science ParkOxonUK
  6. 6.Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, NCINIHBethesdaUSA

Personalised recommendations