Molecular Imaging and Biology

, Volume 13, Issue 5, pp 911–922 | Cite as

In Situ Labeling and Magnetic Resonance Imaging of Transplanted Human Hepatic Stem Cells

  • Randall McClelland
  • Eliane Wauthier
  • Tommi Tallheden
  • Lola M. Reid
  • Edward Hsu
Research Article



The purpose is to address the problem in magnetic resonance imaging (MRI) of contrast agent dilution.


In situ magnetic labeling of cells and MRI were used to assess distribution and growth of human hepatic stem cells (hHpSCs) transplanted into severe combined immunodeficiency (SCID)/non-obese diabetic (NOD) mice. It was done with commercially available magnetic microbeads coupled to an antibody to a surface antigen, epithelial cell adhesion molecule (EpCAM), uniquely expressed in the liver by hepatic progenitors.


We validated the microbead connection to cells and related MRI data to optical microscopy observations in order to develop a means to quantitatively estimate cell numbers in the aggregates detected. Cell counts of hHpSCs at different times post-transplantation revealed quantifiable evidence of cell engraftment and expansion.


This magnetic labeling methodology can be used with any antibody coupled to a magnetic particle to target any surface antigen that distinguishes transplanted cells from host cells, thus facilitating studies that define methods and strategies for clinical cell therapy programs.

Key words

Magnetic resonance imaging (MRI) Cell labeling and tracking Human hepatic stem cells Cell therapies EpCAM 









Epithelial cell adhesion molecule


Hormonally defined medium


Human hepatoblast


Human hepatic stem cell


Kubota’s medium


Magnetically activated cell sorting


Magnetic resonance imaging



Technical and administrative support was provided by Lucendia English, Victoria Morgan, and Dr. Claire Barbier. The microscopy was done in the Michael Hooker Confocal Microscope Facility at UNC (Dr. Michael Chua, director) and the electron microscopy in the Microscope Facility (Dr. Robert Bagnell, director). We thank Dr. Sharon Lubkin for a critical evaluation of the paper and Dr. Claire Barbier for editing the figures.

This work was funded primarily by a US Department of Energy (DOE) grant (DE-FG02-02ER-63477). It derived also from grants from the North Carolina Biotechnology Center, Vesta Therapeutics (Bethesda, MD), the National Institutes of Health (NIH; AA014243 and IP30-DK065933), the National Institute of Diabetes and Digestive and Kidney Diseases (DK34987), and the National Cancer Institute (CA016086). All of the imaging was done in the Duke Center for In Vivo Microscopy (Dr. G.A. Johnson, director), an NIH/National Center for Research Resources Biomedical Technology Resource Center (P41 RR005959) and Small Animal Imaging Resource Program (U24 CA092656).

Conflict of Interest



  1. 1.
    Susick R, Moss N, Kubota H et al (2002) Hepatic progenitors and strategies for liver cell therapies. Ann N Y Acad Sci 943:398–419Google Scholar
  2. 2.
    Ito M, Nagata H, Miyakawa S, Fox IJ (2009) Review of hepatocyte transplantation. J Hepatobiliary Pancreat Surg 16:97–100PubMedCrossRefGoogle Scholar
  3. 3.
    Khan AA, Shaik MV, Parveen N et al (2010) Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis. Cell Transpl, in pressGoogle Scholar
  4. 4.
    Bulte JW, Douglas T, Witwer B et al (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147PubMedCrossRefGoogle Scholar
  5. 5.
    Lewin M, Carlesso N, Tung CH et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414PubMedCrossRefGoogle Scholar
  6. 6.
    Gubin AN, Reddy B, Njoroge JM, Miller JL (1997) Long-term, stable expression of green fluorescent protein in mammalian cells. Biochem Biophys Res Commun 236:347–350PubMedCrossRefGoogle Scholar
  7. 7.
    Song S, Witek RP, Lu Y et al (2004) Ex vivo transduced liver progenitor cells as a platform for gene therapy in mice. Hepatology 40:918–924PubMedGoogle Scholar
  8. 8.
    Gambhir SS, Barrio JR, Herschman HR, Phelps ME (1999) Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol 26:481–490PubMedCrossRefGoogle Scholar
  9. 9.
    Gupta S, Inada M, Joseph B, Kumaran V, Benten D (2004) Emerging insites into liver-directed cell therapy for genetic and acquired disorders. Transpl Immunol 12:289–302PubMedCrossRefGoogle Scholar
  10. 10.
    Wang LJ, Chen YM, George D et al (2002) Engraftment assessment in human and mouse liver tissue after sex-mismatched liver cell transplantation by real-time quantitative PCR for Y chromosome sequences. Liver Transpl 8:822–828PubMedCrossRefGoogle Scholar
  11. 11.
    Mahieu-Caputo D, Allain J, Branger J et al (2004) Repopulation of athymic mouse liver by cryopreserved early human fetal hepatoblasts. Human Gene Therapy 15:1219–1228PubMedCrossRefGoogle Scholar
  12. 12.
    Turner R, Gerber D, Reid LM (2010) Transplantation of cells from solid organs requires grafting protocols. Transplantation, in pressGoogle Scholar
  13. 13.
    Schmelzer E, Zhang L, Bruce A et al (2007) Human hepatic stem cells from fetal and postnatal donors. J Exp Med 204:1973–1987, the authors are equal contributorsPubMedCrossRefGoogle Scholar
  14. 14.
    Wang Y, Yao H-l, Barbier C et al (2010) Lineage-dependent epithelial–mesenchymal paracrine signals dictate growth versus differentiation of human hepatic stem cells to adult fates. Hepatology, in pressGoogle Scholar
  15. 15.
    Schmelzer E, Wauthier E, Reid LM (2006) Phenotypes of pluripotent human hepatic progenitors. Stem Cell 24:1852–1858CrossRefGoogle Scholar
  16. 16.
    Sicklick JK, Li YX, Melhem A et al (2006) Hedgehog signaling maintains resident hepatic progenitors throughout life. [co-senior authors]. Am J Physiol Gastrointest Liver Physiol 290:G859–G870PubMedCrossRefGoogle Scholar
  17. 17.
    Schmelzer E, Reid LM (2009) Telomerase activity in human hepatic stem cells, hepatoblasts and hepatocytes from neonatal, pediatric, adult and geriatric donors. Eur J Hepatol Gastroenterol 21:1191–1198CrossRefGoogle Scholar
  18. 18.
    Schmelzer E, Wauthier E, Melhem A et al (2006) Hepatic stem cells. In: Potten C, Clarke R, Wilson J, Renehan A (eds) Tissue stem cells. Taylor & Francis, NY, pp 161–214Google Scholar
  19. 19.
    Zhang L, Theise N, Chua M, Reid LM (2008) Human hepatic stem cells and hepatoblasts: symmetry between liver development and liver regeneration. Hepatology 48:1598–1607PubMedCrossRefGoogle Scholar
  20. 20.
    Turner WS, Seagle C, Galanko J et al (2008) Metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in engineered hyaluronan-matrix hydrogel scaffolds. Stem Cell 26:1547–1555CrossRefGoogle Scholar
  21. 21.
    Kubota H, Reid LM (2000) Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen. Proc Natl Acad Sci USA 97:12132PubMedCrossRefGoogle Scholar
  22. 22.
    McClelland R, Wauthier E, Zhang L et al (2008) Ex vivo conditions for self-replication of human hepatic stem cells. Tissue Eng 14:1–11CrossRefGoogle Scholar
  23. 23.
    Wauthier E, McClelland R, Turner W et al (2008) Hepatic stem cells and hepatoblasts: identification, isolation and ex vivo maintenance. Methods Cell Biol, Methods for Stem Cells 86:137–225Google Scholar
  24. 24.
    Kubota H, Yao H, Reid LM (2007) Identification and characterization of vitamin A-storing cells in fetal liver. Stem Cell 25:2339–2349CrossRefGoogle Scholar
  25. 25.
    Taylor AE, Granger DW (1984) Exchange of macromolecules across microcapillaries. In: Rankin EM, Michel CC (eds) Section 2. The cardiovascular system, microcirulation: Part 1. Handbook of physiology, vol 4. American Physiological Society, Bethesda, MD, pp 467–520Google Scholar
  26. 26.
    Yamashita Y, Ji J, Budhu A et al (2009) Wnt/β-catenin signaling regulates cancer initiating cells (EpCAM+ AFP+) with stem cell features and metastatic activities in hepatocellular carcinoma. Gastroenterology 136:1012–1024PubMedCrossRefGoogle Scholar
  27. 27.
    Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890PubMedCrossRefGoogle Scholar
  28. 28.
    Benhaj K, Akcali KC, Ozturk M (2006) Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncol Rep 15:701–707PubMedGoogle Scholar
  29. 29.
    Schmelzer E, Reid LM (2008) EpCAM expression in normal, non-pathological tissues. Frontiers Biosci 13:3096–3100CrossRefGoogle Scholar
  30. 30.
    Bulte JW, Duncan ID, Frank JA (2002) In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 22:899–907PubMedCrossRefGoogle Scholar
  31. 31.
    Hill JM, Ma MR, Dick AJ et al (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108:1009–1014PubMedCrossRefGoogle Scholar
  32. 32.
    Walter GA, Cahill KS, Huard J et al (2004) Noninvasive monitoring of stem cell transfer for muscle disorders. Magn Reson Med 51:273–277PubMedCrossRefGoogle Scholar
  33. 33.
    Maxwell DJ, Bonde J, Hess DA et al (2008) Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells. Stem Cells 26:517–524PubMedCrossRefGoogle Scholar
  34. 34.
    Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JWM (2005) Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 54:769–774PubMedCrossRefGoogle Scholar
  35. 35.
    Partlow KC, Chen J, Brant JA et al (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorcarbon nanobeacons. FASEB J 21:1647–1654PubMedCrossRefGoogle Scholar
  36. 36.
    Modo M, Cash D, Mellodew K et al (2007) Tracking transplanted stem cell migration using bifunctional, contrast agent enhanced magnetic resonance imaging. NeuroImage 17:803–811CrossRefGoogle Scholar
  37. 37.
    Naldini L, Blomer U, Gallay P, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of postmitotic cells by a lentiviral vector. Science 272:263–267PubMedCrossRefGoogle Scholar
  38. 38.
    Gropp M, Itsykson P, Singer O et al (2003) Stable genetic modification of human embryonic stem cells by lentiviral vectors. Mol Ther 7:281–287PubMedCrossRefGoogle Scholar
  39. 39.
    Blaese R (2007) What is the status of gene therapy for primary immunodeficiency? Immunol Res 38:274–284PubMedCrossRefGoogle Scholar
  40. 40.
    Jansen JF, Shamblott MJ, van Zijl PC et al (2006) Stem cell profiling by nuclear magnetic resonance spectroscopy. Magn Res Med 56:666–670CrossRefGoogle Scholar
  41. 41.
    Holmes E, Foxall PJD, Spraul M, Duncan Farrant R, Nicholson JK, Lindon JC (1997) 750 MHz 1H NMR spectroscopy characterisation of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease. J Pharm Biomed Anal 15:1647–1659PubMedCrossRefGoogle Scholar
  42. 42.
    Cohen BH, Buiy E, Packer RJ, Sutton LN, Bilaniuk LT, Zimmerman RA (1989) Gadolinium–DTPA-enhanced magnetic resonance imaging in childhood brain tumors. Neurology 39:1178PubMedGoogle Scholar
  43. 43.
    Schafer R, Kehlbach R, Wiskirchen J et al (2007) Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparametic iron oxide. Radiology 244:514–523PubMedCrossRefGoogle Scholar
  44. 44.
    Ji J, Yamashita T, Budhu A et al (2009) Identification of a conserved microRNA-181 family by genome-wide screening as a critical player in hepatic cancer stem cell. Hepatology 50:880–892CrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Randall McClelland
    • 1
    • 7
  • Eliane Wauthier
    • 1
  • Tommi Tallheden
    • 1
    • 8
  • Lola M. Reid
    • 1
    • 2
    • 3
    • 5
  • Edward Hsu
    • 4
    • 6
  1. 1.Department of Cell and Molecular PhysiologyUNC School of MedicineChapel HillUSA
  2. 2.Department of Biomedical EngineeringUNC School of MedicineChapel HillUSA
  3. 3.Program in Molecular Biology and BiotechnologyUNC School of MedicineChapel HillUSA
  4. 4.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  5. 5.Room 34, UNC School of MedicineChapel HillUSA
  6. 6.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  7. 7.SciKonResearch Triangle ParkUSA
  8. 8.Laboratoriet för Klinisk kemi och TransfusionsmedicinSkeneSweden

Personalised recommendations