Molecular Imaging and Biology

, Volume 13, Issue 5, pp 1003–1010 | Cite as

PET Imaging of Hypoxia-Inducible Factor-1-Active Tumor Cells with Pretargeted Oxygen-Dependent Degradable Streptavidin and a Novel 18F-Labeled Biotin Derivative

  • Takashi Kudo
  • Masashi Ueda
  • Hiroaki Konishi
  • Hidekazu Kawashima
  • Yuji Kuge
  • Takahiro Mukai
  • Azusa Miyano
  • Shotaro Tanaka
  • Shinae Kizaka-Kondoh
  • Masahiro Hiraoka
  • Hideo SajiEmail author
Research Article



We aimed to evaluate the feasibility of using streptavidin–biotin-based pretargeting for positron emission tomography (PET) imaging of hypoxia-inducible factor (HIF)-1-active tumors.


We used POS, a genetically engineered form of streptavidin that selectively stabilizes in HIF-1-active cells, and (4-18F-fluorobenzoyl)norbiotinamide (18F-FBB), a radiolabeled biotin derivative, for performing a biodistribution study and for PET imaging. The tumoral 18F-FBB accumulation was compared to the HIF-1-dependent luciferase bioluminescence and HIF-1α immunohistochemical signal.


18F-FBB accumulation was observed in POS-pretargeted tumors in mice (2.85 ± 0.55% injected dose per gram at 3 h), and clear PET images were obtained at the same time point. The tumoral 18F-FBB accumulation positively correlated with luciferase bioluminescence (R = 0.72, P < 0.05), and most of the area showing 18F-FBB accumulation corresponded to HIF-1α-positive areas.


Pretargeting with POS and 18F-FBB is an effective approach for PET imaging of HIF-1-active areas in tumors.

Key Words

Tumor hypoxia Hypoxia-inducible factor-1 (HIF-1) Oxygen-dependent degradation domain (ODD) Pretargeting 18F-labeled biotin derivative 



We are grateful to Hiroyuki Kimura, Kenji Tomatsu, and Yu Ogawa for preparation of 18F-SFB, and Kei Ogawa for skilled technical assistance.

This study was supported in part by Health Labour Sciences Research Grant for Research on Advanced Medical Technology from the Ministry of Health, Labour and Welfare of Japan; “R&D of Molecular Imaging Equipment for Malignant Tumor Therapy Support” by the New Energy and Industrial Technology Development Organization (NEDO), Japan; and a Grant-in-Aid for Exploratory Research (17659010) and a Grant-in-Aid for Young Scientists (B) (21791187) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of interest

The authors have no conflict of interest.

Supplementary material

11307_2010_418_MOESM1_ESM.pdf (33 kb)
ESM 1 (PDF 32.5 kb)


  1. 1.
    Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465PubMedGoogle Scholar
  2. 2.
    Brown JM (2000) Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 6:157–162PubMedCrossRefGoogle Scholar
  3. 3.
    Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276PubMedCrossRefGoogle Scholar
  4. 4.
    Semenza GL (2007) Life with oxygen. Science 318:62–64PubMedCrossRefGoogle Scholar
  5. 5.
    Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732PubMedCrossRefGoogle Scholar
  6. 6.
    Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8:425–437PubMedCrossRefGoogle Scholar
  7. 7.
    Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514PubMedCrossRefGoogle Scholar
  8. 8.
    Harada H, Kizaka-Kondoh S, Li G et al (2007) Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene 26:7508–7516PubMedCrossRefGoogle Scholar
  9. 9.
    Harada H, Kizaka-Kondoh S, Hiraoka M (2005) Optical imaging of tumor hypoxia and evaluation of efficacy of a hypoxia-targeting drug in living animals. Mol Imaging 4:182–193PubMedGoogle Scholar
  10. 10.
    Kizaka-Kondoh S, Konse-Nagasawa H (2009) Significance of nitroimidazole compounds and hypoxia-inducible factor-1 for imaging tumor hypoxia. Cancer Sci 100:1366–1373PubMedCrossRefGoogle Scholar
  11. 11.
    Kizaka-Kondoh S, Tanaka S, Harada H, Hiraoka M (2009) The HIF-1-active microenvironment: an environmental target for cancer therapy. Adv Drug Deliv Rev 61:623–632PubMedCrossRefGoogle Scholar
  12. 12.
    Kudo T, Ueda M, Kuge Y et al (2009) Imaging of HIF-1-active tumor hypoxia using a protein effectively delivered to and specifically stabilized in HIF-1-active tumor cells. J Nucl Med 50:942–949PubMedCrossRefGoogle Scholar
  13. 13.
    Ueda M, Kudo T, Kuge Y et al (2010) Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1α. Eur J Nucl Med Mol Imaging 37:1566–1574PubMedCrossRefGoogle Scholar
  14. 14.
    Shoup TM, Fischman AJ, Jaywook S, Babich JW, Strauss HW, Elmaleh DR (1994) Synthesis of fluorine-18-labeled biotin derivatives: biodistribution and infection localization. J Nucl Med 35:1685–1690PubMedGoogle Scholar
  15. 15.
    Vaidyanathan G, Zalutsky MR (2006) Synthesis of N-succinimidyl 4-[18F]fluorobenzoate, an agent for labeling proteins and peptides with 18F. Nat Protoc 1:1655–1661PubMedCrossRefGoogle Scholar
  16. 16.
    Hara T, Higashi T, Nakamoto Y et al (2009) Significance of chronic marked hyperglycemia on FDG-PET: is it really problematic for clinical oncologic imaging? Ann Nucl Med 23:657–669PubMedCrossRefGoogle Scholar
  17. 17.
    Ono M, Watanabe R, Kawashima H et al (2009) Fluoro-pegylated chalcones as positron emission tomography probes for in vivo imaging of beta-amyloid plaques in Alzheimer’s disease. J Med Chem 52:6394–6401PubMedCrossRefGoogle Scholar
  18. 18.
    Kimura H, Tomatsu K, Kawashima H et al (2009) Development of one-flow synthesis method for N-succinimidyl 4-[F-18]fluorobenzoate ([F-18]SFB) using microreactor for 3-step-reaction. J Label Compd Radiopharm 52:S9–S9Google Scholar
  19. 19.
    Tang G, Zeng WB, Yu MX, Kabalka G (2008) Facile synthesis of N-succinimidyl 4-[F-18]fluorobenzoate ([F-18]SFB) for protein labeling. J Label Compd Radiopharm 51:68–71CrossRefGoogle Scholar
  20. 20.
    Kizaka-Kondoh S, Itasaka S, Zeng L et al (2009) Selective killing of hypoxia-inducible factor-1-active cells improves survival in a mouse model of invasive and metastatic pancreatic cancer. Clin Cancer Res 15:3433–3441PubMedCrossRefGoogle Scholar
  21. 21.
    Ueda M, Iida Y, Tominaga A et al (2010) Nicotinic acetylcholine receptors expressed in the ventralposterolateral thalamic nucleus play an important role in anti-allodynic effects. Br J Pharmacol 159:1201–1210PubMedCrossRefGoogle Scholar
  22. 22.
    Picchio M, Beck R, Haubner R et al (2008) Intratumoral spatial distribution of hypoxia and angiogenesis assessed by 18F-FAZA and 125I-Gluco-RGD autoradiography. J Nucl Med 49:597–605PubMedCrossRefGoogle Scholar
  23. 23.
    Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49 Suppl 2:129S–148SPubMedCrossRefGoogle Scholar
  24. 24.
    Mees G, Dierckx R, Vangestel C, Van de Wiele C (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36:1674–1686PubMedCrossRefGoogle Scholar
  25. 25.
    Dunphy MP, Lewis JS (2009) Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med 50 Suppl 1:106S–121SPubMedCrossRefGoogle Scholar
  26. 26.
    Lehmann S, Stiehl DP, Honer M et al (2009) Longitudinal and multimodal in vivo imaging of tumor hypoxia and its downstream molecular events. Proc Natl Acad Sci U S A 106:14004–14009PubMedCrossRefGoogle Scholar
  27. 27.
    Oh M, Tanaka T, Kobayashi M et al (2009) Radio-copper-labeled Cu-ATSM: an indicator of quiescent but clonogenic cells under mild hypoxia in a Lewis lung carcinoma model. Nucl Med Biol 36:419–426PubMedCrossRefGoogle Scholar
  28. 28.
    Chauhan J, Dakshinamurti K (1986) Purification and characterization of human serum biotinidase. J Biol Chem 261:4268–4275PubMedGoogle Scholar
  29. 29.
    Foulon CF, Alston KL, Zalutsky MR (1997) Synthesis and preliminary biological evaluation of (3-iodobenzoyl)norbiotinamide and ((5-iodo-3-pyridinyl)carbonyl)norbiotinamide: two radioiodinated biotin conjugates with improved stability. Bioconjug Chem 8:179–186PubMedCrossRefGoogle Scholar
  30. 30.
    Liu RS, Chou TK, Chang CH et al (2009) Biodistribution, pharmacokinetics and PET imaging of [18F]FMISO, [18F]FDG and [18F]FAc in a sarcoma- and inflammation-bearing mouse model. Nucl Med Biol 36:305–312PubMedCrossRefGoogle Scholar
  31. 31.
    Serganova I, Doubrovin M, Vider J et al (2004) Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 64:6101–6108PubMedCrossRefGoogle Scholar
  32. 32.
    Hsieh CH, Kuo JW, Lee YJ, Chang CW, Gelovani JG, Liu RS (2009) Construction of mutant TKGFP for real-time imaging of temporal dynamics of HIF-1 signal transduction activity mediated by hypoxia and reoxygenation in tumors in living mice. J Nucl Med 50:2049–2057PubMedCrossRefGoogle Scholar
  33. 33.
    Wen B, Burgman P, Zanzonico P et al (2004) A preclinical model for noninvasive imaging of hypoxia-induced gene expression; comparison with an exogenous marker of tumor hypoxia. Eur J Nucl Med Mol Imaging 31:1530–1538PubMedCrossRefGoogle Scholar
  34. 34.
    Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ (1999) Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med 40:177–183PubMedGoogle Scholar
  35. 35.
    Piert M, Machulla HJ, Picchio M et al (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46:106–113PubMedGoogle Scholar
  36. 36.
    Dakshinamurti K, Chauhan J, Ebrahim H (1987) Intestinal absorption of biotin and biocytin in the rat. Biosci Rep 7:667–673PubMedCrossRefGoogle Scholar
  37. 37.
    Hainsworth J, Harrison P, Mather SJ (2005) Preparation and characterization of a DOTA–lysine–biotin conjugate as an effector molecule for pretargeted radionuclide therapy. Bioconjug Chem 16:1468–1474PubMedCrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Takashi Kudo
    • 1
  • Masashi Ueda
    • 1
    • 2
  • Hiroaki Konishi
    • 1
  • Hidekazu Kawashima
    • 1
    • 3
  • Yuji Kuge
    • 1
    • 4
  • Takahiro Mukai
    • 5
  • Azusa Miyano
    • 1
  • Shotaro Tanaka
    • 6
  • Shinae Kizaka-Kondoh
    • 6
  • Masahiro Hiraoka
    • 6
  • Hideo Saji
    • 1
    Email author
  1. 1.Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
  2. 2.Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of MedicineKyoto UniversityKyotoJapan
  3. 3.Department of Nuclear Medicine and Diagnostic Imaging, Graduate School of MedicineKyoto UniversityKyotoJapan
  4. 4.Central Institute of Isotope ScienceHokkaido UniversitySapporoJapan
  5. 5.Department of Biomolecular Recognition Chemistry, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
  6. 6.Department of Radiation Oncology and Image-Applied Therapy, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations