Advertisement

Molecular Imaging and Biology

, Volume 13, Issue 4, pp 769–775 | Cite as

68Ga-DOTA-TATE PET vs. 123I-MIBG in Identifying Malignant Neural Crest Tumours

  • Meeran Naji
  • Chunlei Zhao
  • Sarah J. Welsh
  • Richard Meades
  • Zarni Win
  • Annalisa Ferrarese
  • Tricia Tan
  • Domenico Rubello
  • Adil Al-Nahhas
Research Article

Abstract

Purpose

We aimed to compare imaging with 123I-MIBG and 68Ga-DOTA-TATE in neural crest tumours (NCT) to see if the latter could offer more advantage in detecting extra lesions and have higher sensitivity for malignant lesions.

Procedures

We retrospectively reviewed 12 patients (M = 10, F = 2; age range 20–71 years) with NCT (phaeochromocytomas = 7, paragangliomas = 4, medullary thyroid cancer = 1) who underwent both 68Ga-DOTA-TATE positron emission tomography (PET) or PET/computed tomography (CT) and 123I-MIBG single-photon emission computed tomography within 6 months. Visual assessment of all lesions and measurement of target/non-target (T/N) ratio in selected lesions were performed. Five patients (aged 50 or less) had SDHB screening results correlated with imaging results of both radiopharmaceuticals. All patients had contrast-enhanced CT and/or other cross-sectional imaging.

Results

68Ga-DOTA-TATE PET showed tumour lesions in ten out of 12 patients with confirmed disease, while 123I-MIBG showed lesions in five out of 12 patients. In one patient, both 68Ga-DOTA-TATE PET and 123I-MIBG were negative, but CT, magnetic resonance imaging, and 2-deoxy-2-[18F]fluoro-D-glucose PET scans identified a lesion in the thorax. 68Ga-DOTA-TATE and 123I-MIBG detected a total of 30 lesions, of which 29/30 were positive with 68Ga-DOTA-TATE and 7/30 with 123I-MIBG. We also found higher incidence of SDHB positive results in patients with positive 68Ga-DOTA-TATE.

Conclusion

Our limited data suggest that 68Ga-DOTA-TATE is a better imaging agent for NCT and detects significantly more lesions with higher T/N ratio compared to 123I-MIBG. 68Ga-DOTA-TATE was more likely to detect malignant lesions as indicated by correlating imaging results with SDHB screening.

Key words

68Ga-DOTA-TATE PET 123I-MIBG scintigraphy Malignant neural crest tumours 

Notes

Conflict of Interest Statement

The authors declare they have no conflict of interest in the preparation of the present paper.

References

  1. 1.
    Neumann HP, Bausch B, McWhinny SR, Bender BU, Gimm O, Franke G et al (2002) Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346:1459–1466PubMedCrossRefGoogle Scholar
  2. 2.
    O’Riordain D, Young WF, Grant CS, Carney JA, van Heerden (1996) Clinical spectrum and outcome of functional extraadrenal paraganglioma. World J Surg 20:916–922PubMedCrossRefGoogle Scholar
  3. 3.
    Reisch N, Peczkowska M, Januszewicz A, Neumann HP (2006) Pheochromocytoma: presentation, diagnosis and treatment. J Hypertens 24:2331–2339PubMedCrossRefGoogle Scholar
  4. 4.
    Win Z, Al-Nahhas A, Towey D, Todd JF, Rubello D, Lewington V, Gishen P (2007) 68Ga-DOTATATE PET in neuroectodermal tumours: first experience. Nucl Med Commun 28:359–363PubMedCrossRefGoogle Scholar
  5. 5.
    Ilias I, Chen CC, Carrasquillo JA, Whatley M, Ling A, Lazurova I et al (2008) Comparison of 6-18F-fluorodopamine positron emission tomography to 123I-metaiodobenzylguanidine and 111In-pentetreotide scintigraphy in the localization of non-metastatic and metastatic pheochromocytoma. J Nucl Med 49:1613–1619PubMedCrossRefGoogle Scholar
  6. 6.
    Lewigton VJ (2003) Targeted radionuclide therapy for neuroendocrine tumours. Endocr-Relat Cancer 10:497–501CrossRefGoogle Scholar
  7. 7.
    Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK et al (2005) Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 46(Suppl 1):62S–66SPubMedGoogle Scholar
  8. 8.
    Smith SL, Vincent RM, Perkins AC, Wastie ML, Sokal M (2001) Does simple estimation of 131I-metaiodobenzylguanidine uptake in patients with neural crest tumours correlate with clinical outcome? Nucl Med Commun 22:257–260PubMedCrossRefGoogle Scholar
  9. 9.
    Pasini B, Stratakis CA (2009) SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J Intern Med 266(1):19–42PubMedCrossRefGoogle Scholar
  10. 10.
    Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C et al (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704PubMedCrossRefGoogle Scholar
  11. 11.
    Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E et al (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49–54PubMedCrossRefGoogle Scholar
  12. 12.
    Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851PubMedCrossRefGoogle Scholar
  13. 13.
    Niemann S, Muller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268–270PubMedCrossRefGoogle Scholar
  14. 14.
    Karagiannis A, Mikhailidis DP, Athyros VG, Harsoulis F (2007) Pheochromocytoma: an update on genetics and management. Endocr-Relat Cancer 14:935–956PubMedCrossRefGoogle Scholar
  15. 15.
    Benn DE, Gimenez-Roqueplo A-P, Reilly JR, Bertherat J, Burgess J, Byth K et al (2006) Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab 91:27–836Google Scholar
  16. 16.
    Klein RD, Jin L, Rumilla K, Young WF Jr, Lloyd RV (2008) Germline SDHB mutations are common in patients with apparently sporadic sympathetic paragangliomas. Diagn Mol Pathol 17(2):94–100PubMedCrossRefGoogle Scholar
  17. 17.
    Bryant J, Farmer J, Kessler LJ, Townsend RR, Nathanson KL (2003) Pheochromocytoma: the expanding genetic differential diagnosis. J Natl Cancer Inst 95(16):1196–1204PubMedCrossRefGoogle Scholar
  18. 18.
    Chrisoulidou A, Kaltsas G, Ilias I, Grossman AB (2007) The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr-Relat Cancer 14(3):569–585PubMedCrossRefGoogle Scholar
  19. 19.
    Ilias I, Pacak K (2004) Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab 89:479–491PubMedCrossRefGoogle Scholar
  20. 20.
    Go AS (1998) Refining probability: an introduction to the use of diagnostic tests. In: Friedland DJ (ed) Evidence-based medicine. McGraw-Hill, New York, pp 12–33Google Scholar
  21. 21.
    Wieland DM, Wu JL, Brown LE (1980) Radiolabelled adrenergic neuron blocking agents: adrenomedullary imaging with 131Iiodobenzylguanidine. J Nucl Med 21:349–353PubMedGoogle Scholar
  22. 22.
    Beierwaltes WH (1991) Endocrine imaging: parathyroid, adrenal cortex and medulla, and other endocrine tumors. Part II. J Nucl Med 32:1627–1639PubMedGoogle Scholar
  23. 23.
    McEwan AJ, Shapiro B, Sisson JC, Beierwaltes WH, Ackery DM (1985) Radioiodobezylguanidine for the scintigraphic location and therapy of adrenergic tumors. Semin Nucl Med 15:132–153PubMedCrossRefGoogle Scholar
  24. 24.
    Shulkin BL, Ilias I, Sisson JC, Pacak K (2006) Current trends in functional imaging of pheochromocytomas and paragangliomas. Ann NY Acad Sci 1073:374–382PubMedCrossRefGoogle Scholar
  25. 25.
    Mann GN, Link JM, Pham P, Pickett CA, Byrd DR, Kinahan PE et al (2006) 11C-metahydroxyephedrine and 18F-fluorodeoxyglucose positron emission tomography improve clinical decision making in suspected phaeochromocytoma. Ann Surg Oncol 13(2):187–197PubMedCrossRefGoogle Scholar
  26. 26.
    Reynolds S, Lewington V (2008) Radionuclide imaging of phaeochromocytoma and paraganglioma. Imaging 34:21–24Google Scholar
  27. 27.
    Koopmans KP, Jager PL, Kema IP, Kerstens MN, Albersy F, Dullaart RPF (2008) 111In-octreotide is superior to 123I-metaiodobenzylguanidine for scintigraphic detection of head and neck paragangliomas. J Nucl Med 49:1232–1237PubMedCrossRefGoogle Scholar
  28. 28.
    Ilias I, Pacak K (2008) A clinical overview of pheochromocytomas/paragangliomas and carcinoid tumors. Nucl Med Biol 35(Suppl 1):S27–S34PubMedCrossRefGoogle Scholar
  29. 29.
    Brink I, Hoegerle S, Klisch J, Bley TA (2005) Imaging of pheochromocytoma and paraganglioma. Fam Cancer 4(1):61–68PubMedCrossRefGoogle Scholar
  30. 30.
    Maurea S, Mainolfi C, Wang H, Varrella P, Panico MR, Klain M et al (1996) Positron emission tomography (PET) with fludeoxyglucose F 18 in the study of adrenal masses: comparison of benign and malignant lesions. Radiol Med 92:782–787PubMedGoogle Scholar
  31. 31.
    Shulkin BL, Thompson NW, Shapiro B, Francis IR, Sisson JC (1999) Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology 212:35–41PubMedGoogle Scholar
  32. 32.
    Neumann DR, Basile KE, Bravo EL, Chen EQ, Go RT (1996) Malignant phaeochromocytoma of the anterior mediastinum: PET findings with [18F] FDG and 82Rb. J Comput Assist Tomogr 20:312–316PubMedCrossRefGoogle Scholar
  33. 33.
    Mamede M, Carrasquillo JA, Chen CC, Del Corral P, Whatley M, Ilias I et al (2006) Discordant localization of 2-[18F]-fluoro-2-deoxy-D-glucose in 6-[18F]-fluorodopamine- and [(123)I]-metaiodobenzylguanidine-negative metastatic pheochromocytoma sites. Nucl Med Commun 27:31–36PubMedCrossRefGoogle Scholar
  34. 34.
    Timmers H, Chen C, Carrasquillo J, Whatley M, Ling A, Havekes B et al (2009) Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 94(12):4757–4767PubMedCrossRefGoogle Scholar
  35. 35.
    Khan S, Lloyd C, Szyszko T, Win Z, Rubello D, Al-Nahhas A (2008) PET imaging in endocrine tumours. Minerva Endocrinol 33(2):41–52PubMedGoogle Scholar
  36. 36.
    Al-Nahhas A, Win Z, Szyszko T, Singh A, Khan S, Rubello D (2007) What can gallium-68 PET add to receptor and molecular imaging? Eur J Nucl Med Mol Imaging 34(12):1897–1901PubMedCrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Meeran Naji
    • 1
  • Chunlei Zhao
    • 2
  • Sarah J. Welsh
    • 1
  • Richard Meades
    • 1
  • Zarni Win
    • 1
  • Annalisa Ferrarese
    • 3
  • Tricia Tan
    • 4
  • Domenico Rubello
    • 5
  • Adil Al-Nahhas
    • 1
  1. 1.Department of Nuclear MedicineImperial College Healthcare TrustLondonUK
  2. 2.Department of Nuclear MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
  3. 3.Service of Clinical Pharmacy‘Santa Maria della Misericordia’ HospitalRovigoItaly
  4. 4.Department of EndocrinologyImperial College Healthcare TrustLondonUK
  5. 5.Department of Nuclear Medicine, PET/CT Centre, Radiology, Medical PhysicsSanta Maria della Misericordia’ HospitalRovigoItaly

Personalised recommendations