Molecular Imaging and Biology

, Volume 13, Issue 2, pp 314–320

MRI with Magnetic Nanoparticles Monitors Downstream Anti-Angiogenic Effects of mTOR Inhibition

  • Alexander R. Guimaraes
  • Robert Ross
  • Jose L. Figuereido
  • Peter Waterman
  • Ralph Weissleder
Research Article

Abstract

Purpose

To study the effect of mammalian target of rapamycin (mTOR) inhibition on angiogenesis with magnetic resonance imaging (MRI) using magnetic iron oxide nanoparticles (MNP).

Procedures

One million CAK-1 renal cell carcinoma cells were subcutaneously implanted into each of 20 nude mice. When tumors reached ∼750 μl, four daily treatment arms began and continued for 4 weeks: rapamycin (mTOR inhibitor) 10 mg/kg/day; sorafenib (VEGF inhibitor) high dose (80 mg/kg/day) and low dose (30 mg/kg/day); and saline control. Weekly MRI (4.7 T Bruker Pharmascan) was performed before and after IV MION-48, a prototype MNP similar to MNP in clinical trials. Vascular volume fraction (VVF) was quantified as ΔR2 (from multi-contrast T2 sequences) and normalized to assumed muscle VVF of 3%. Linear regression compared VVF to microvascular density (MVD) as determined by histology.

Results

VVF correlated with MVD (R2 = 0.95). VVF in all treatment arms differed from control (p < 0.05) and declined weekly with treatment. VVF changes with rapamycin were similar to high-dose sorafenib.

Conclusion

This study demonstrates noninvasive, in vivo anti-angiogenic monitoring using MRI of mTOR inhibition.

Key words

Magnetic resonance imaging MRI Magnetic nanoparticle imaging Ultrasmall superparamagnetic iron oxide nanoparticle Renal cell cancer mTOR Angiogenesis 

References

  1. 1.
    Escudier B et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134PubMedCrossRefGoogle Scholar
  2. 2.
    Hudes G et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281PubMedCrossRefGoogle Scholar
  3. 3.
    Motzer RJ et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124PubMedCrossRefGoogle Scholar
  4. 4.
    Jac J et al (2007) A phase II trial of RAD001 in patients with metastatic renal cell carcinoma (MRCC). Proc Am Soc Clin Oncol 25 (18S): 5107Google Scholar
  5. 5.
    Lamuraglia M et al (2006) To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced Doppler ultrasound. Eur J Cancer 42:2472–2479PubMedCrossRefGoogle Scholar
  6. 6.
    Marzola P et al (2004) In vivo assessment of antiangiogenic activity of SU6668 in an experimental colon carcinoma model. Clin Cancer Res 10:739–750PubMedCrossRefGoogle Scholar
  7. 7.
    Marzola P et al (2005) Early antiangiogenic activity of SU11248 evaluated in vivo by dynamic contrast-enhanced magnetic resonance imaging in an experimental model of colon carcinoma. Clin Cancer Res 11:5827–5832PubMedCrossRefGoogle Scholar
  8. 8.
    Del Bufalo D et al (2006) Antiangiogenic potential of the mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 66:5549–5554PubMedCrossRefGoogle Scholar
  9. 9.
    Thomas GV et al (2006) Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12:122–127PubMedCrossRefGoogle Scholar
  10. 10.
    Heng DY, Bukowski RM (2008) Anti-angiogenic targets in the treatment of advanced renal cell carcinoma. Curr Cancer Drug Targets 8:676–682PubMedCrossRefGoogle Scholar
  11. 11.
    Lainakis G, Bamias A (2008) Targeting angiogenesis in renal cell carcinoma. Curr Cancer Drug Targets 8:349–358PubMedCrossRefGoogle Scholar
  12. 12.
    Lane HA et al (2009) mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res 15:1612–1622PubMedCrossRefGoogle Scholar
  13. 13.
    Lee DF, Hung MC (2007) All roads lead to mTOR: integrating inflammation and tumor angiogenesis. Cell Cycle 6:3011–3014PubMedCrossRefGoogle Scholar
  14. 14.
    Mabuchi S et al (2007) RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 67:2408–2413PubMedCrossRefGoogle Scholar
  15. 15.
    Szczylik C, Demkow T, Staehler M (2007) Final results of the randomized phase III trial of sorafenib in advanced renal cell carcinoma: survival and biomarker analysis. Proc Am Soc Clin Oncol MeetGoogle Scholar
  16. 16.
    Flaherty KT et al (2008) Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 7:496–501PubMedCrossRefGoogle Scholar
  17. 17.
    Rosen MA, Schnall MD (2007) Dynamic contrast-enhanced magnetic resonance imaging for assessing tumor vascularity and vascular effects of targeted therapies in renal cell carcinoma. Clin Cancer Res 13:770s–776sPubMedCrossRefGoogle Scholar
  18. 18.
    Schnell CR et al (2008) Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature: implications for clinical imaging. Cancer Res 68:6598–6607PubMedCrossRefGoogle Scholar
  19. 19.
    Bremer C et al (2003) Steady-state blood volume measurements in experimental tumors with different angiogenic burdens a study in mice. Radiology 226:214–220PubMedCrossRefGoogle Scholar
  20. 20.
    Guimaraes AR et al (2008) Magnetic resonance imaging monitors physiological changes with antihedgehog therapy in pancreatic adenocarcinoma xenograft model. Pancreas 37:440–444PubMedCrossRefGoogle Scholar
  21. 21.
    Persigehl T et al (2007) Antiangiogenic tumor treatment: early noninvasive monitoring with USPIO-enhanced MR imaging in mice. Radiology 244:449–456PubMedCrossRefGoogle Scholar
  22. 22.
    Boxerman J et al (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566PubMedCrossRefGoogle Scholar
  23. 23.
    Dennie J et al (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40:793–799PubMedCrossRefGoogle Scholar
  24. 24.
    Tang Y et al (2005) In vivo assessment of RAS-dependent maintenance of tumor angiogenesis by real-time magnetic resonance imaging. Cancer Res 65:8324–8330PubMedCrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Alexander R. Guimaraes
    • 1
    • 2
    • 4
  • Robert Ross
    • 3
  • Jose L. Figuereido
    • 1
    • 2
  • Peter Waterman
    • 1
    • 2
  • Ralph Weissleder
    • 1
    • 2
  1. 1.Center for Molecular Imaging Research, Department of RadiologyMassachusetts General HospitalCharlestownUSA
  2. 2.Center for Systems BiologyMassachusetts General HospitalBostonUSA
  3. 3.Lank Center for Genitourinary OncologyDana Farber Cancer InstituteBostonUSA
  4. 4.Division of Abdominal Imaging, Department of RadiologyMassachusetts General HospitalBostonUSA

Personalised recommendations