Molecular Imaging and Biology

, Volume 13, Issue 2, pp 215–221 | Cite as

Biodistribution and Clearance of Small Molecule Hapten Chelates for Pretargeted Radioimmunotherapy

  • Kelly Davis Orcutt
  • Khaled A. Nasr
  • David G. Whitehead
  • John V. Frangioni
  • K. Dane Wittrup
Brief Article

Abstract

Purpose

The favorable pharmacokinetics and clinical safety profile of metal-chelated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) suggests that it might be an ideal hapten for pretargeted radioimmunotherapy. In an effort to minimize hapten retention in normal tissues and determine the effect of various chemical adducts on in vivo properties, a series of DOTA-based derivatives were evaluated.

Procedures

Biodistribution and whole-body clearance were evaluated for 177Lu-labeled DOTA, DOTA-biotin, a di-DOTA peptide, and DOTA-aminobenzene in normal CD1 mice. Kidney, liver, and bone marrow doses were estimated using standard Medical Internal Radiation Dose methodology.

Results

All haptens demonstrated similar low tissue and whole-body retention, with 2–4% of the injected dose remaining in mice 4 h postinjection. The kidney is predicted to be dose limiting for all 177Lu-labeled haptens tested with an estimated kidney dose of approximately 0.1 mGy/MBq.

Conclusions

We present here a group of DOTA-based haptens that exhibit rapid clearance and exceptionally low whole-body retention 4 h postinjection. Aminobenzene, tyrosine–lysine, and biotin groups have minimal effects on the blood clearance and biodistribution of 177Lu-DOTA.

Key words

Pretargeted radioimmunotherapy DOTA Biodistribution Clearance Radiation dosimetry 

Notes

Acknowledgments

The authors acknowledge Elaine P. Lunsford and Gaurav Gulati for technical assistance and Hak Soo Choi for helpful discussions. This work was supported by the Lewis Family Fund (JVF), National Institutes of Health grant R01-CA-101830 (KDW), and a National Science Foundation Graduate Research Fellowship (KDO).

References

  1. 1.
    Boerman OC, van Schaijk FG, Oyen WJ, Corstens FH (2003) Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med 44:400–411PubMedGoogle Scholar
  2. 2.
    Gruaz-Guyon A, Raguin O, Barbet J (2005) Recent advances in pretargeted radioimmunotherapy. Curr Med Chem 12:319–338PubMedGoogle Scholar
  3. 3.
    Goodwin DA, Meares CF, McCall MJ, McTigue M, Chaovapong W (1988) Pre-targeted immunoscintigraphy of murine tumors with indium-111-labeled bifunctional haptens. J Nucl Med 29:226–234PubMedGoogle Scholar
  4. 4.
    Axworthy DB, Reno JM, Hylarides MD et al (2000) Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci USA 97:1802–1807PubMedCrossRefGoogle Scholar
  5. 5.
    Subbiah K, Hamlin DK, Pagel JM et al (2003) Comparison of immunoscintigraphy, efficacy, and toxicity of conventional and pretargeted radioimmunotherapy in CD20-expressing human lymphoma xenografts. J Nucl Med 44:437–445PubMedGoogle Scholar
  6. 6.
    Pagel JM, Orgun N, Hamlin DK et al (2009) A comparative analysis of conventional and pretargeted radioimmunotherapy of B-cell lymphomas by targeting CD20, CD22, and HLA-DR singly and in combinations. Blood 113:4903–4913PubMedCrossRefGoogle Scholar
  7. 7.
    Sharkey RM, Karacay H, Johnson CR et al (2009) Pretargeted versus directly targeted radioimmunotherapy combined with anti-CD20 antibody consolidation therapy of non-Hodgkin lymphoma. J Nucl Med 50:444–453PubMedCrossRefGoogle Scholar
  8. 8.
    Hamblett KJ, Kegley BB, Hamlin DK et al (2002) A streptavidin–biotin binding system that minimizes blocking by endogenous biotin. Bioconjug Chem 13:588–598PubMedCrossRefGoogle Scholar
  9. 9.
    Forster GJ, Santos EB, Smith-Jones PM, Zanzonico P, Larson SM (2006) Pretargeted radioimmunotherapy with a single-chain antibody/streptavidin construct and radiolabeled DOTA-biotin: strategies for reduction of the renal dose. J Nucl Med 47:140–149PubMedGoogle Scholar
  10. 10.
    Sharkey RM, McBride WJ, Karacay H et al (2003) A universal pretargeting system for cancer detection and therapy using bispecific antibody. Cancer Res 63:354–363PubMedGoogle Scholar
  11. 11.
    Gautherot E, Rouvier E, Daniel L et al (2000) Pretargeted radioimmunotherapy of human colorectal xenografts with bispecific antibody and 131I-labeled bivalent hapten. J Nucl Med 41:480–487PubMedGoogle Scholar
  12. 12.
    Chen X, Park R, Tohme M et al (2004) MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 15:41–49PubMedCrossRefGoogle Scholar
  13. 13.
    Chen X, Sievers E, Hou Y et al (2005) Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia 7:271–279PubMedCrossRefGoogle Scholar
  14. 14.
    Garrison JC, Rold TL, Sieckman GL et al (2007) In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: side-by-side comparison of the CB-TE2A and DOTA chelation systems. J Nucl Med 48:1327–1337PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang H, Schuhmacher J, Waser B et al (2007) DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours. Eur J Nucl Med Mol Imaging 34:1198–1208PubMedCrossRefGoogle Scholar
  16. 16.
    Schmitt A, Bernhardt P, Nilsson O et al (2005) Differences in biodistribution between 99mTc-depreotide, 111In-DTPA-octreotide, and 177Lu-DOTA-Tyr3-octreotate in a small cell lung cancer animal model. Cancer Biother Radiopharm 20:231–236PubMedCrossRefGoogle Scholar
  17. 17.
    Wild D, Behe M, Wicki A et al (2006) [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J Nucl Med 47:2025–2033PubMedGoogle Scholar
  18. 18.
    Haubner R, Wester HJ, Burkhart F et al (2001) Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336PubMedGoogle Scholar
  19. 19.
    Ferreira CL, Lamsa E, Woods M et al (2010) Evaluation of bifunctional chelates for the development of gallium-based radiopharmaceuticals. Bioconjug Chem 21:531–536CrossRefGoogle Scholar
  20. 20.
    Cutler CS, Smith CJ, Ehrhardt GJ et al (2000) Current and potential therapeutic uses of lanthanide radioisotopes. Cancer Biother Radiopharm 15:531–545PubMedCrossRefGoogle Scholar
  21. 21.
    Le Mignon MM, Chambon C, Warrington S, Davies R, Bonnemain B (1990) Gd-DOTA. Pharmacokinetics and tolerability after intravenous injection into healthy volunteers. Invest Radiol 25:933–937PubMedCrossRefGoogle Scholar
  22. 22.
    Bourrinet P, Martel E, El Amrani AI et al (2007) Cardiovascular safety of gadoterate meglumine (Gd-DOTA). Invest Radiol 42:63–77PubMedCrossRefGoogle Scholar
  23. 23.
    Orcutt KD, Ackerman ME, Cieslewicz M et al (2010) A modular IgG-scFv bispecific antibody topology. Protein Eng Des Sel 23:221–228PubMedCrossRefGoogle Scholar
  24. 24.
    Banerjee SR, Foss CA, Castanares M et al (2008) Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). J Med Chem 51:4504–4517PubMedCrossRefGoogle Scholar
  25. 25.
    Humblet V, Misra P, Frangioni JV (2006) An HPLC/mass spectrometry platform for the development of multimodality contrast agents and targeted therapeutics: prostate-specific membrane antigen small molecule derivatives. Contrast Media Mol Imaging 1:196–211PubMedCrossRefGoogle Scholar
  26. 26.
    Misra P, Humblet V, Pannier N, Maison W, Frangioni JV (2007) Production of multimeric prostate-specific membrane antigen small-molecule radiotracers using a solid-phase 99mTc preloading strategy. J Nucl Med 48:1379–1389PubMedCrossRefGoogle Scholar
  27. 27.
    Stabin MG, Siegel JA (2003) Physical models and dose factors for use in internal dose assessment. Health Phys 85:294–310PubMedCrossRefGoogle Scholar
  28. 28.
    Wessels BW, Bolch WE, Bouchet LG et al (2004) Bone marrow dosimetry using blood-based models for radiolabeled antibody therapy: a multiinstitutional comparison. J Nucl Med 45:1725–1733PubMedGoogle Scholar
  29. 29.
    Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122PubMedGoogle Scholar
  30. 30.
    Barbet J, Peltier P, Bardet S et al (1998) Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA × anti-DTPA-indium bispecific antibody. J Nucl Med 39:1172–1178PubMedGoogle Scholar
  31. 31.
    Knox SJ, Goris ML, Tempero M et al (2000) Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res 6:406–414PubMedGoogle Scholar
  32. 32.
    Lin Y, Pagel JM, Axworthy D et al (2006) A genetically engineered anti-CD45 single-chain antibody–streptavidin fusion protein for pretargeted radioimmunotherapy of hematologic malignancies. Cancer Res 66:3884–3892PubMedCrossRefGoogle Scholar
  33. 33.
    Behr TM, Goldenberg DM, Becker W (1998) Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 25:201–212PubMedCrossRefGoogle Scholar
  34. 34.
    Kraeber-Bodere F, Rousseau C, Bodet-Milin C et al (2006) Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial. J Nucl Med 47:247–255PubMedGoogle Scholar
  35. 35.
    Fisher DR, Shen S, Meredith RF (2009) MIRD dose estimate report No. 20: radiation absorbed-dose estimates for 111In- and 90Y-ibritumomab tiuxetan. J Nucl Med 50:644–652PubMedCrossRefGoogle Scholar
  36. 36.
    Zacchetti A, Coliva A, Luison E et al (2009) (177)Lu- labeled MOv18 as compared to (131)I- or (90)Y-labeled MOv18 has the better therapeutic effect in eradication of alpha folate receptor-expressing tumor xenografts. Nucl Med Biol 36:759–770PubMedCrossRefGoogle Scholar
  37. 37.
    Jaggi JS, Seshan SV, McDevitt MR et al (2006) Mitigation of radiation nephropathy after internal alpha-particle irradiation of kidneys. Int J Radiat Oncol Biol Phys 64:1503–1512PubMedCrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Kelly Davis Orcutt
    • 1
  • Khaled A. Nasr
    • 4
  • David G. Whitehead
    • 4
  • John V. Frangioni
    • 4
    • 5
  • K. Dane Wittrup
    • 1
    • 2
    • 3
  1. 1.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Division of Hematology/OncologyBeth Israel Deaconess Medical CenterBostonUSA
  5. 5.Department of MedicineBeth Israel Deaconess Medical CenterBostonUSA

Personalised recommendations