Molecular Imaging and Biology

, Volume 13, Issue 2, pp 352–361 | Cite as

Restricted Water Diffusibility as Measured by Diffusion-weighted MR Imaging and Choline Uptake in 11C-Choline PET/CT are Correlated in Pelvic Lymph Nodes in Patients with Prostate Cancer

  • Ambros J. Beer
  • Matthias Eiber
  • Michael Souvatzoglou
  • Konstantin Holzapfel
  • Carl Ganter
  • Gregor Weirich
  • Tobias Maurer
  • Hubert Kübler
  • Hans-Juergen Wester
  • Jochen Gaa
  • Bernd J. Krause
Research Article



11C-Choline-positron emission tomography (PET)/computed tomography (CT) is increasingly used in patients with prostate cancer. Another promising technique for assessment of tumor biology is diffusion-weighted MR imaging (DWI). The aim of the study was to compare the functional parameters standardized uptake value (SUV) in PET and apparent diffusion coefficient (ADC) value in DWI of lymph nodes in prostate cancer patients.


Fourteen patients with prostate cancer underwent DWI at 1.5T and 11C-Choline-PET/CT. ADC values and SUVs of all lymph nodes larger than 5 mm (n = 55) were compared by using linear regression analysis. Performance of DWI and 11C-Choline PET was assessed by receiver operator characteristic curve analysis using histopathology or clinical follow-up as standard of reference.


ADC values and SUV showed a moderate but highly significant inverse correlation (r = −0.5144, p < 0.0001). In lymph nodes with low ADC values, the dispersion of SUV was more pronounced. Moreover, a highly significant difference was observed for mean ADC values and SUV in lymph nodes considered as benign or malignant by follow-up/histopathology (ADC 1.60 ± 0.24 vs. 1.09 ± 0.23 × 10−3 mm2/s; SUV 1.82 ± 0.57 vs. 4.68 ± 03.12; p < 0.0001, respectively).


These pilot data propose the ADC value in DWI as a new potential imaging biomarker which might provide additional information on tumor pathophysiology compared to the SUV in 11C-Choline PET/CT.

Key words

11C-Choline PET/CT Diffusion-weighted MR imaging Comparison Lymph node metastases Prostate cancer 


  1. 1.
    Gronberg H (2003) Prostate cancer epidemiology. Lancet 361:859–864PubMedCrossRefGoogle Scholar
  2. 2.
    Soh S, Kattan M, Berkman S, Wheeler T, Scardino P (1997) Has there been a recent shift in the pathological features and prognosis of patients treated with radical prostatectomy? J Urol 157:2212–2218PubMedCrossRefGoogle Scholar
  3. 3.
    Cagiannos I, Karakiewicz P, Eastham J et al (2003) A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J Urol 170:1798–1803PubMedCrossRefGoogle Scholar
  4. 4.
    Hricak H, Schoder H, Pucar D et al (2003) Advances in imaging in the postoperative patient with a rising prostate-specific antigen level. Semin Oncol 30:616–634PubMedCrossRefGoogle Scholar
  5. 5.
    de Jong I, Pruim J, Elsinga P, Vaalburg W, Mensink H (2003) Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 44:331–335PubMedGoogle Scholar
  6. 6.
    Rorvik J, Halvorsen O, Albrektsen G, Haukaas S (1998) Lymphangiography combined with biopsy and computer tomography to detect lymph node metastases in localized prostate cancer. Scand J Urol Nephrol 32:116–119PubMedCrossRefGoogle Scholar
  7. 7.
    Jager G, Barentsz J, Oosterhof G, Witjes J, Ruijs S (1996) Pelvic adenopathy in prostatic and urinary bladder carcinoma: MR imaging with a three-dimensional TI-weighted magnetization-prepared-rapid gradient-echo sequence. AJR Am J Roentgenol 167:1503–1507PubMedGoogle Scholar
  8. 8.
    Oyen R, Van Poppel H, Ameye F et al (1994) Lymph node staging of localized prostatic carcinoma with CT and CT-guided fine-needle aspiration biopsy: prospective study of 285 patients. Radiology 190:315–322PubMedGoogle Scholar
  9. 9.
    Wang L, Hricak H, Kattan M et al (2006) Combined endorectal and phased-array MRI in the prediction of pelvic lymph node metastasis in prostate cancer. AJR Am J Roentgenol 186:743–748PubMedCrossRefGoogle Scholar
  10. 10.
    Wolf J, Cher M, Dall’era M et al (1995) The use and accuracy of cross-sectional imaging and fine needle aspiration cytology for detection of pelvic lymph node metastases before radical prostatectomy. J Urol 153:993–999PubMedCrossRefGoogle Scholar
  11. 11.
    Harisinghani M, Barentsz J, Hahn P et al (2003) Noninvasive detection of clinically occult lymph node metastases in prostate cancer. N Engl J Med 348:2491–2499PubMedCrossRefGoogle Scholar
  12. 12.
    Hricak H, Choyke P, Eberhardt S, Leibel S, Scardino P (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243:28–53PubMedCrossRefGoogle Scholar
  13. 13.
    Krause B, Souvatzoglou M, Tuncel M et al (2008) The detection rate of [(11)C]Choline-PET/CT depends on the serum PSA value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35:18–23PubMedCrossRefGoogle Scholar
  14. 14.
    Reske S, Blumstein N, Glatting G (2008) [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 35:9–17PubMedCrossRefGoogle Scholar
  15. 15.
    Rinnab L, Mottaghy F, Blumstein N et al (2007) Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int 100:786–793PubMedCrossRefGoogle Scholar
  16. 16.
    Husarik D, Miralbell R, Dubs M et al (2008) Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35:253–263PubMedCrossRefGoogle Scholar
  17. 17.
    Scattoni V, Picchio M, Suardi N et al (2007) Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol 52:423–429PubMedCrossRefGoogle Scholar
  18. 18.
    Eschmann S, Pfannenberg A, Rieger A et al (2007) Comparison of 11C-choline-PET/CT and whole body MRI for staging of prostate cancer. Nuklearmedizin 46:161–168PubMedGoogle Scholar
  19. 19.
    Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T (2005) 11C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int 74:214–220PubMedCrossRefGoogle Scholar
  20. 20.
    Wesbey G, Moseley M, Ehman R (1984) Translational molecular self-diffusion in magnetic resonance imaging. II. Measurement of the self-diffusion coefficient. Invest Radiol 19:491–498PubMedCrossRefGoogle Scholar
  21. 21.
    Koh D, Collins D (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635PubMedCrossRefGoogle Scholar
  22. 22.
    Abdel Razek A, Soliman N, Elkhamary S, Alsharaway M, Tawfik A (2006) Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol 16:1468–1477PubMedCrossRefGoogle Scholar
  23. 23.
    Holzapfel K, Duetsch S, Fauser C et al (2009) Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes. Eur J Radiol 72(3):381–387PubMedCrossRefGoogle Scholar
  24. 24.
    Kim J, Kim K, Park B, Kim N, Cho K (2008) Feasibility of diffusion-weighted imaging in the differentiation of metastatic from nonmetastatic lymph nodes: early experience. J Magn Reson Imaging 28:714–719PubMedCrossRefGoogle Scholar
  25. 25.
    Lichy M, Aschoff P, Plathow C et al (2007) Tumor detection by diffusion-weighted MRI and ADC-mapping—initial clinical experiences in comparison to PET-CT. Invest Radiol 42:605–613PubMedCrossRefGoogle Scholar
  26. 26.
    Thoeny H, Triantafyllou M, Birkhaeuser F et al (2009) Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol 55(4):761–769PubMedCrossRefGoogle Scholar
  27. 27.
    Hara T (2002) 11C-choline and 2-deoxy-2-[18F]fluoro-D-glucose in tumor imaging with positron emission tomography. Mol Imaging Biol 4:267–273PubMedCrossRefGoogle Scholar
  28. 28.
    Klerkx W, Mali W, Peter HA et al (2009) Observer variation of magnetic resonance imaging and diffusion weighted imaging in pelvic lymph node detection. Eur J RadiolGoogle Scholar
  29. 29.
    Hickeson M, Yun M, Matthies A et al (2002) Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET. Eur J Nucl Med Mol Imaging 29:1639–1647PubMedCrossRefGoogle Scholar
  30. 30.
    Thie J (2004) Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 45:1431–1434PubMedGoogle Scholar
  31. 31.
    Soret M, Bacharach S, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932–945PubMedCrossRefGoogle Scholar
  32. 32.
    Tuncel M, Souvatzoglou M, Herrmann K et al (2008) [(11)C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nucl Med Biol 35:689–695PubMedCrossRefGoogle Scholar
  33. 33.
    Bruegel M, Holzapfel K, Gaa J et al (2008) Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18:477–485PubMedCrossRefGoogle Scholar
  34. 34.
    Holzapfel K, Bruegel M, Eiber M et al (2009) Characterization of small (</=10 mm) focal liver lesions: value of respiratory-triggered echo-planar diffusion-weighted MR imaging. Eur J RadiolGoogle Scholar
  35. 35.
    Low R, Gurney J (2007) Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. J Magn Reson Imaging 25:848–858PubMedCrossRefGoogle Scholar
  36. 36.
    Shen S, Chiou Y, Wang J et al (2008) Diffusion-weighted single-shot echo-planar imaging with parallel technique in assessment of endometrial cancer. AJR Am J Roentgenol 190:481–488PubMedCrossRefGoogle Scholar
  37. 37.
    Ho K, Lin G, Wang J et al (2008) Correlation of apparent diffusion coefficients measured by 3T diffusion-weighted MRI and SUV from FDG PET/CT in primary cervical cancer. Eur J Nucl Med Mol Imaging 35:493–501CrossRefGoogle Scholar
  38. 38.
    Mori T, Nomori H, Ikeda K et al (2008) Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J Thorac Oncol 3:358–364PubMedCrossRefGoogle Scholar
  39. 39.
    Palumbo B, Angotti F, Marano G (2008) Relationship between PET-FDG and MRI apparent diffusion coefficients in brain tumors. Q J Nucl Med Mol Imaging 53(1):17–22PubMedGoogle Scholar
  40. 40.
    Ackerstaff E, Pflug B, Nelson J, Bhujwalla Z (2001) Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 61:3599–3603PubMedGoogle Scholar
  41. 41.
    Casciani E, Gualdi G (2006) Prostate cancer: value of magnetic resonance spectroscopy 3D chemical shift imaging. Abdom Imaging 31:490–499PubMedCrossRefGoogle Scholar
  42. 42.
    Ramirez DM, Gutierrez R, Ramos M et al (2002) Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene 21:4317–4322CrossRefGoogle Scholar
  43. 43.
    Ramirez DM, Rodriguez-Gonzalez A, Gutierrez R et al (2002) Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun 296:580–583CrossRefGoogle Scholar
  44. 44.
    Hara T, Bansal A, Degrado T (2006) Choline transporter as a novel target for molecular imaging of cancer. Mol Imaging 5:498–509PubMedGoogle Scholar
  45. 45.
    Katz-Brull R, Degani H (1996) Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res 16:1375–1380PubMedGoogle Scholar
  46. 46.
    Provenzale J, Mukundan S, Barboriak D (2006) Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239:632–649PubMedCrossRefGoogle Scholar
  47. 47.
    Wang J, Takashima S, Takayama F et al (2001) Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology 220:621–630PubMedCrossRefGoogle Scholar
  48. 48.
    Hofer C, Laubenbacher C, Block T et al (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36:31–35PubMedCrossRefGoogle Scholar
  49. 49.
    Nuñez R, Macapinlac HA, Yeung HWD et al (2002) Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 43:46–55Google Scholar
  50. 50.
    Morris MJ, Akhurst T, Osman I et al (2002) Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 59:913–918PubMedCrossRefGoogle Scholar
  51. 51.
    Agus DB, Golde DW, Sgouros G et al (1998) Positron emission tomography of a human prostate cancer xenograft: association of changes in deoxyglucose accumulation with other measures of outcome following androgen withdrawal. Cancer Res 58:3009–3014PubMedGoogle Scholar
  52. 52.
    Picchio M, Crivellaro C, Giovacchini G, Gianolli L, Messa C (2009) PET-CT for treatment planning in prostate cancer. The Quarterly Journal of Nuclear Medicine and Molecular Imaging: Official Publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of Radiopharmaceutical. Chemistry and Biology 53:245–268Google Scholar
  53. 53.
    Torizuka T, Kanno T, Futatsubashi M et al (2003) Imaging of gynecologic tumors: comparison of (11)C-choline PET with (18)F-FDG PET. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 44:1051–1056Google Scholar
  54. 54.
    Wyss M, Weber B, Honer M et al (2004) 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging 31:312–316PubMedCrossRefGoogle Scholar
  55. 55.
    van Waarde A, Jager P, Ishiwata K, Dierckx R, Elsinga P (2006) Comparison of sigma-ligands and metabolic PET tracers for differentiating tumor from inflammation. J Nucl Med 47:150–154PubMedGoogle Scholar
  56. 56.
    Sutinen E, Nurmi M, Roivainen A et al (2004) Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 31:317–324PubMedCrossRefGoogle Scholar
  57. 57.
    Farsad M, Schiavina R, Castellucci P et al (2005) Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 46:1642–1649Google Scholar
  58. 58.
    Heesakkers R, Hovels A, Jager G et al (2008) MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol 9:850–856PubMedCrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Ambros J. Beer
    • 1
  • Matthias Eiber
    • 2
  • Michael Souvatzoglou
    • 1
  • Konstantin Holzapfel
    • 2
  • Carl Ganter
    • 2
  • Gregor Weirich
    • 3
  • Tobias Maurer
    • 4
  • Hubert Kübler
    • 4
  • Hans-Juergen Wester
    • 1
  • Jochen Gaa
    • 2
  • Bernd J. Krause
    • 1
  1. 1.Department of Nuclear MedicineKlinikum rechts der Isar, Technische Universität MünchenMunichGermany
  2. 2.Department of RadiologyKlinikum rechts der Isar, Technische Universität MünchenMunichGermany
  3. 3.Institute of PathologyKlinikum rechts der Isar, Technische Universität MünchenMunichGermany
  4. 4.Department of UrologyKlinikum rechts der Isar, Technische Universität MünchenMunichGermany

Personalised recommendations