Molecular Imaging and Biology

, Volume 13, Issue 1, pp 140–151 | Cite as

[(Methyl)1-11C]-Acetate Metabolism in Hepatocellular Carcinoma

  • Nicolas Salem
  • Yu Kuang
  • David Corn
  • Bernadette Erokwu
  • Jeffrey A. Kolthammer
  • Haibin Tian
  • Chunying Wu
  • Fangjing Wang
  • Yanming Wang
  • Zhenghong LeeEmail author
Research Article



Studies have established the value of [(methyl)1-11C]-acetate ([11C]Act) combined with 2-deoxy-2[18F]fluoro-d-glucose (FDG) for detecting hepatocellular carcinoma (HCC) using positron emission tomography (PET). In this study, the metabolic fate of [11C]Act in HCC was characterized.


Experiments with acetic acid [1-14C] sodium salt ([14C]Act) were carried out on WCH-17 cells and freshly derived rat hepatocytes. PET scans with [11C]Act were also carried out on woodchucks with HCC before injection of [14C]Act. The radioactivity levels in different metabolites were quantified with thin-layer chromatography.


In WCH-17 cells, the predominant metabolite was phosphatidylcholine (PC). Regions of HCCs with the highest [11C]Act uptake had higher radioactivity accumulation in lipid-soluble compounds than surrounding hepatic tissues. In those regions, PC and triacylglycerol (TG) accumulated more radioactivity than in surrounding hepatic tissues.


High [11C]Act uptake in HCC is associated with increased de novo lipogenesis. PC and TG are the main metabolites into which the radioactive label from [11C]Act is incorporated in HCC.

Key words

Acetate Hepatocellular carcinoma (HCC) Positron emission tomography (PET) Liver cancer Tumor metabolism Lipid Woodchuck Marmota monax 



We are grateful to Dr. Ann-Marie Broome for her technical assistance in obtaining, preserving, and maintaining the cell lines used in this study. This work was supported in part by NIH/NCI CA095307 (Principal Investigator: Zhenghong Lee), a NIH Interdisciplinary Biomedical Imaging Training Program predoctoral training grant T32EB007509-02 (Principal Investigator: David L. Wilson), and a 2008 Society of Nuclear Medicine fellowship award (recipient: Nicolas Salem). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


  1. 1.
    Ferlay J, Bray F, Pisani P et al (2004) GLOBOCAN 2: cancer incidence, mortality and prevalence worldwide. IARC, LyonGoogle Scholar
  2. 2.
    Theakston F (ed) (2008) World Health Statistics 2008. World Health Organization, Geneva, p 112Google Scholar
  3. 3.
    El-Serag HB, Mason AC (1999) Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 340(10):745–750CrossRefPubMedGoogle Scholar
  4. 4.
    El-Serag HB, Mason AC (2000) Risk factors for the rising rates of primary liver cancer in the United States. Arch Intern Med 160(21):3227–3230CrossRefPubMedGoogle Scholar
  5. 5.
    El-Serag HB, Mason AC, Key C (2001) Trends in survival of patients with hepatocellular carcinoma between 1977 and 1996 in the United States. Hepatology 33(1):62–65CrossRefPubMedGoogle Scholar
  6. 6.
    Previsani N, Lavanchy D (2002) Hepatitis B. World Health Organization—Department of Communicable Diseases Surveillance and Response, Geneva, p 76Google Scholar
  7. 7.
    Shin JA, Park JW, An M et al (2006) Diagnostic accuracy of 18F-FDG positron emission tomography for evaluation of hepatocellular carcinoma. Korean J Hepatol 12(4):546–552PubMedGoogle Scholar
  8. 8.
    Yamamoto Y, Nishiyama Y, Kameyama R et al (2008) Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18F-FDG PET. J Nucl Med 49(8):1245–1248CrossRefPubMedGoogle Scholar
  9. 9.
    Lin WY, Tsai SC, Hung GU (2005) Value of delayed 18F-FDG-PET imaging in the detection of hepatocellular carcinoma. Nucl Med Commun 26(4):315–321CrossRefPubMedGoogle Scholar
  10. 10.
    Wudel LJ Jr, Delbeke D, Morris D et al (2003) The role of [18F]fluorodeoxyglucose positron emission tomography imaging in the evaluation of hepatocellular carcinoma. Am Surg 69(2):117–124; discussion 124–116PubMedGoogle Scholar
  11. 11.
    Trojan J, Schroeder O, Raedle J et al (1999) Fluorine-18 FDG positron emission tomography for imaging of hepatocellular carcinoma. Am J Gastroenterol 94(11):3314–3319CrossRefPubMedGoogle Scholar
  12. 12.
    Delbeke D, Martin WH, Sandler MP et al (1998) Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch Surg 133(5):510–515; discussion 515–516CrossRefPubMedGoogle Scholar
  13. 13.
    Bruix J, Sherman M (2005) Management of hepatocellular carcinoma. Hepatology 42(5):1208–1236CrossRefPubMedGoogle Scholar
  14. 14.
    Llovet JM, Bruix J (2008) Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol 48(Suppl 1):S20–S37CrossRefPubMedGoogle Scholar
  15. 15.
    Ho CL, Yu SC, Yeung DW (2003) 11C-Acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44(2):213–221PubMedGoogle Scholar
  16. 16.
    Li S, Beheshti M, Peck-Radosavljevic M et al (2006) Comparison of (11)C-acetate positron emission tomography and (67)Gallium citrate scintigraphy in patients with hepatocellular carcinoma. Liver Int 26(8):920–927CrossRefPubMedGoogle Scholar
  17. 17.
    Park JW, Kim JH, Kim SK et al (2008) A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med 49(12):1912–1921CrossRefPubMedGoogle Scholar
  18. 18.
    Hwang KH, Choi DJ, Lee SY et al (2009) Evaluation of patients with hepatocellular carcinomas using [(11)C]acetate and [(18)F]FDG PET/CT: a preliminary study. Appl Radiat Isot 67:1195–1198CrossRefPubMedGoogle Scholar
  19. 19.
    Yu MC, Yuan JM, Govindarajan S et al (2000) Epidemiology of hepatocellular carcinoma. Can J Gastroenterol 14(8):703–709PubMedGoogle Scholar
  20. 20.
    Tennant BC, Toshkov IA, Peek SF et al (2004) Hepatocellular carcinoma in the woodchuck model of hepatitis B virus infection. Gastroenterology 127(5 Suppl 1):S283–S293CrossRefPubMedGoogle Scholar
  21. 21.
    Abe K, Kurata T, Shikata T et al (1988) Enzyme-altered liver cell foci in woodchucks infected with woodchuck hepatitis virus. Jpn J Cancer Res 79(4):466–472PubMedGoogle Scholar
  22. 22.
    Aldrich CE, Coates L, Wu TT et al (1989) In vitro infection of woodchuck hepatocytes with woodchuck hepatitis virus and ground squirrel hepatitis virus. Virology 172(1):247–252CrossRefPubMedGoogle Scholar
  23. 23.
    Chen HS, Kaneko S, Girones R et al (1993) The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks. J Virol 67(3):1218–1226PubMedGoogle Scholar
  24. 24.
    Cote PJ, Korba BE, Steinberg H et al (1991) Cyclosporin A modulates the course of woodchuck hepatitis virus infection and induces chronicity. J Immunol 146(9):3138–3144PubMedGoogle Scholar
  25. 25.
    Korba BE, Cote PJ, Wells FV et al (1989) Natural history of woodchuck hepatitis virus infections during the course of experimental viral infection: molecular virologic features of the liver and lymphoid tissues. J Virol 63(3):1360–1370PubMedGoogle Scholar
  26. 26.
    Popper H, Roth L, Purcell RH et al (1987) Hepatocarcinogenicity of the woodchuck hepatitis virus. Proc Natl Acad Sci U S A 84(3):866–870CrossRefPubMedGoogle Scholar
  27. 27.
    Chu CK, Boudinot FD, Peek SF et al (1998) Preclinical investigation of L-FMAU as an anti-hepatitis B virus agent. Antivir Ther 3(Suppl 3):113–121PubMedGoogle Scholar
  28. 28.
    Luxembourg A, Hannaman D, Wills K et al (2008) Immunogenicity in mice and rabbits of DNA vaccines expressing woodchuck hepatitis virus antigens. Vaccine 26(32):4025–4033CrossRefPubMedGoogle Scholar
  29. 29.
    Menne S, Butler SD, George AL et al (2008) Antiviral effect of lamivudine, emtricitabine, adefovir dipivoxil, and tenofovir disoproxil fumarate, administered orally alone and in combination, to woodchucks with chronic woodchuck hepatitis virus infection. Antimicrob Agents Chemother 52: 3617–3632CrossRefPubMedGoogle Scholar
  30. 30.
    Menne S, Cote PJ, Korba BE et al (2005) Antiviral effect of oral administration of tenofovir disoproxil fumarate in woodchucks with chronic woodchuck hepatitis virus infection. Antimicrob Agents Chemother 49(7):2720–2728CrossRefPubMedGoogle Scholar
  31. 31.
    Menne S, Tennant BC, Gerin JL et al (2007) Chemoimmunotherapy of chronic hepatitis B virus infection in the woodchuck model overcomes immunologic tolerance and restores T-cell responses to pre-S and S regions of the viral envelope protein. J Virol 81(19):10614–10624CrossRefPubMedGoogle Scholar
  32. 32.
    Torizuka T, Tamaki N, Inokuma T et al (1995) In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med 36(10):1811–1817PubMedGoogle Scholar
  33. 33.
    Salem N, MacLennan GT, Kuang Y et al (2007) Quantitative evaluation of 2-deoxy-2[F-18]fluoro-D-glucose-positron emission tomography imaging on the woodchuck model of hepatocellular carcinoma with histological correlation. Mol Imaging Biol 9(3):135–143CrossRefPubMedGoogle Scholar
  34. 34.
    Salem N, Kuang Y, Wang F et al (2009) PET imaging of hepatocellular carcinoma with 2-deoxy-2[18F]fluoro-D-glucose, 6-deoxy-6[18F] fluoro-D-glucose, [1-11C]-acetate and [N-methyl-11C]-choline. Q J Nucl Med Mol Imaging 53(2):144–156PubMedGoogle Scholar
  35. 35.
    Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol 43(3):506–520CrossRefPubMedGoogle Scholar
  36. 36.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  37. 37.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917PubMedGoogle Scholar
  38. 38.
    Smillie RM, Krotkov G (1960) The estimation of nucleic acids in some algae and higher plants. Can J Bot 38:31–49CrossRefGoogle Scholar
  39. 39.
    Yoshimoto M, Waki A, Yonekura Y et al (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 28(2):117–122CrossRefPubMedGoogle Scholar
  40. 40.
    Norfolk E, Khan SH, Fried B et al (1994) Comparison of amino acid separations on high performance silica gel, cellulose, and C-18 reversed phase layers and application of HPTLC to the determination of amino acids in Biomphalaria glabrata snails. J Liq Chromatogr Relat Technol 17(6):1317–1326CrossRefGoogle Scholar
  41. 41.
    Kupke IR, Zeugner S (1978) Quantitative high-performance thin-layer chromatography of lipids in plasma and liver homogenates after direct application of 0.5-microliter samples to the silica-gel layer. J Chromatogr 146(2):261–271CrossRefPubMedGoogle Scholar
  42. 42.
    Kihlberg T, Valind S, Langstrom B (1994) Synthesis of [1-11C], [2-11C], [1-11C](2H3) and [2-11C](2H3)acetate for in vivo studies of myocardium using PET. Nucl Med Biol 21(8):1067–1072CrossRefPubMedGoogle Scholar
  43. 43.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509PubMedGoogle Scholar
  44. 44.
    Brown M, Marshall DR, Sobel BE et al (1987) Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 76(3):687–696PubMedGoogle Scholar
  45. 45.
    Blouin A, Bolender RP, Weibel ER (1977) Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol 72(2):441–455CrossRefPubMedGoogle Scholar
  46. 46.
    Jiang J, Xu N, Zhang X et al (2007) Lipids changes in liver cancer. Journal of Zhejiang University-Science B 8(6):398–409CrossRefPubMedGoogle Scholar
  47. 47.
    Yamashita T, Honda M, Takatori H et al (2009) Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol 50(1):100–110CrossRefPubMedGoogle Scholar
  48. 48.
    Kawata S, Takaishi K, Nagase T et al (1990) Increase in the active form of 3-hydroxy-3-methylglutaryl coenzyme A reductase in human hepatocellular carcinoma: possible mechanism for alteration of cholesterol biosynthesis. Cancer Res 50(11):3270–3273PubMedGoogle Scholar
  49. 49.
    Yun M, Bang SH, Kim JW et al (2009) The importance of acetyl coenzyme A synthetase for 11C-acetate uptake and cell survival in hepatocellular carcinoma. J Nucl Med 50(8):1222–1228CrossRefPubMedGoogle Scholar
  50. 50.
    Wang F, Anderson PW, Salem N et al (2006) Gene expression studies of hepatitis virus-induced woodchuck hepatocellular carcinoma in correlation with human results. Int J Oncol 30(1):33–44Google Scholar
  51. 51.
    Yu K, Schomisch SJ, Chandramouli V et al (2006) Hexokinase and glucose-6-phosphatase activity in woodchuck model of hepatitis virus-induced hepatocellular carcinoma. Comp Biochem Physiol C Toxicol Pharmacol 143(2):225–231CrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Nicolas Salem
    • 1
  • Yu Kuang
    • 1
  • David Corn
    • 2
  • Bernadette Erokwu
    • 2
  • Jeffrey A. Kolthammer
    • 1
  • Haibin Tian
    • 2
  • Chunying Wu
    • 2
  • Fangjing Wang
    • 1
  • Yanming Wang
    • 1
    • 2
  • Zhenghong Lee
    • 1
    • 2
    Email author
  1. 1.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Department of RadiologyUniversity Hospitals Case Medical CenterClevelandUSA

Personalised recommendations