Molecular Imaging and Biology

, Volume 12, Issue 5, pp 463–467 | Cite as

AuNP-DG: Deoxyglucose-Labeled Gold Nanoparticles as X-ray Computed Tomography Contrast Agents for Cancer Imaging

  • Bulent Aydogan
  • Ji Li
  • Tijana Rajh
  • Ahmed Chaudhary
  • Steven J. Chmura
  • Charles Pelizzari
  • Christian Wietholt
  • Metin Kurtoglu
  • Peter Redmond
Rapid Communication

Abstract

Purpose

To study the feasibility of using 2-deoxy-d-glucose (2-DG)-labeled gold nanoparticle (AuNP-DG) as a computed tomography (CT) contrast agent with tumor targeting capability through in vitro experiments.

Procedures

Gold nanoparticles (AuNP) were fabricated and were conjugated with 2-deoxy-d-glucose. The human alveolar epithelial cancer cell line, A-549, was chosen for the in vitro cellular uptake assay. Two groups of cell samples were incubated with the AuNP-DG and the unlabeled AuNP, respectively. Following the incubation, the cells were washed with sterile PBS to remove the excess gold nanoparticles and spun to cell pellets using a centrifuge. The cell pellets were imaged using a microCT scanner immediately after the centrifugation. The reconstructed CT images were analyzed using a commercial software package.

Results

Significant contrast enhancement in the cell samples incubated with the AuNP-DG with respect to the cell samples incubated with the unlabeled AuNP was observed in multiple CT slices.

Conclusions

Results from this study demonstrate enhanced uptake of 2-DG-labeled gold nanoparticle by cancer cells in vitro and warrant further experiments to study the exact molecular mechanism by which the AuNP-DG is internalized and retained in the tumor cells.

Key words

Gold nanoparticle Contrast-enhanced CT 2-Deoxy-d-glucose Cancer imaging Tumor targeting 

Notes

Acknowledgement

This work was partially supported by Research Training in Medical Physics 5 T32-EB002103-19. Use of the Center for Nanoscale Materials at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357.

References

  1. 1.
    Weissleder R (2006). Science 312:1168–1171CrossRefPubMedGoogle Scholar
  2. 2.
    Lee TY (2002) Trends in Biotech 20:S3–S10CrossRefGoogle Scholar
  3. 3.
    Kao CY, Hoffman EA, Beck KC et al (2003) Acad Radiol 10:475–483CrossRefPubMedGoogle Scholar
  4. 4.
    Schmiedl UP, Krause W, Leike J et al (1999) Acad Radiol 6:164–169CrossRefPubMedGoogle Scholar
  5. 5.
    Fruman SA, Harned RK II, Marcus D et al (1994) Acad Radiol 1:151–153CrossRefPubMedGoogle Scholar
  6. 6.
    Vera DR, Mattrey RF (2002) Acad Radiol 9:784–792CrossRefPubMedGoogle Scholar
  7. 7.
    Bonvento M, Moore W, Button T et al (2003) Acad Radiol 13:979–985CrossRefGoogle Scholar
  8. 8.
    Miyamoto A, Okimoto H, Shinohara H et al (2006) Eur Radiol 16:1050–1053CrossRefPubMedGoogle Scholar
  9. 9.
    Yu SB, Watson AD (1999) Chem Rev 99:2352–2378CrossRefGoogle Scholar
  10. 10.
    Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R (2006) Nat Mater 5:118–122CrossRefGoogle Scholar
  11. 11.
    Qian X, Peng XH, Ansari DO et al (2008) Nat Biotechnol 26:83–90CrossRefPubMedGoogle Scholar
  12. 12.
    Popovtzer R, Agrawal A, Kotov NA et al (2008) Nano Lett 8:4593–4596CrossRefPubMedGoogle Scholar
  13. 13.
    Cai QY, Kim SH, Choi KS, Kim et al (2007) Invest. Radiol 42:797–806Google Scholar
  14. 14.
    Kim D, Park S, Lee JH et al (2007) J Am Chem Soc 129:7661–7665CrossRefPubMedGoogle Scholar
  15. 15.
    Hainfeld JF, Slatkin DN, Focella TMet al (2006) Br J Radiol 79:248–253CrossRefPubMedGoogle Scholar
  16. 16.
    Hayat MA (1991) Colloidal gold: principles, methods and applications, volume 1. Academic, San DiegoGoogle Scholar
  17. 17.
    Slot JW, Geuze HJ (1985) Eur J Cell Biol 38:87–93PubMedGoogle Scholar
  18. 18.
    Hermanson GT (2008) Bioconjugate techniques, 2nd ed. Elsevier/Academic Press, LondonGoogle Scholar
  19. 19.
    Ambrose J, Hounsfield G (1973) Br J Radiol 46:1016–1047CrossRefGoogle Scholar
  20. 20.
    Su H, Bodenstein C, Dumont R et al (2006) Clin Cancer Res 12:5659–5667CrossRefPubMedGoogle Scholar
  21. 21.
    Chung JK, Lee YJ, Kim SK et al (2004) Nucl Med Commun 25:11–17CrossRefPubMedGoogle Scholar
  22. 22.
    Barnett JEG, Holman GD, Munday KA (1973) Biochem J 131:211–221PubMedGoogle Scholar
  23. 23.
    Lampidis TJ, Kurtoglu M et al (2004) Cancer Chemother Pharmacol 53:116–122CrossRefPubMedGoogle Scholar
  24. 24.
    Landau BR, Spring-Robinson CL, Muzic RF Jr et al (2007) Am J Physiol Endocrinol Metab 293:E237–E245CrossRefPubMedGoogle Scholar
  25. 25.
    Etzioni R, Urban N, Ramsey S et al (2003) Nat Rev Cancer 3:242–252CrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Bulent Aydogan
    • 1
  • Ji Li
    • 1
  • Tijana Rajh
    • 2
  • Ahmed Chaudhary
    • 1
  • Steven J. Chmura
    • 1
  • Charles Pelizzari
    • 1
  • Christian Wietholt
    • 3
    • 4
  • Metin Kurtoglu
    • 5
  • Peter Redmond
    • 2
  1. 1.Department of Radiation and Cellular OncologyThe University of ChicagoChicagoUSA
  2. 2.Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA
  3. 3.Department of RadiologyThe University of ChicagoChicagoUSA
  4. 4.Department of Medicine/CardiologyThe University of ChicagoChicagoUSA
  5. 5.Department of Hematology and Medical OncologyEmory University Winship Cancer InstituteAtlantaUSA

Personalised recommendations