Advertisement

Molecular Imaging and Biology

, Volume 12, Issue 3, pp 250–258 | Cite as

Feasibility of Template-Guided Attenuation Correction in Cat Brain PET Imaging

  • Jin Su Kim
  • Jae Sung LeeEmail author
  • Min-Hyun Park
  • Kyeong Min Kim
  • Seung-Ha Oh
  • Gi Jeong Cheon
  • In Chan Song
  • Dae Hyuk Moon
  • June-Key Chung
  • Dong Soo Lee
Research Article

Abstract

Purpose

Attenuation correction (AC) is important in quantitative positron emission tomography (PET) imaging of medium-sized animals such as the cat. However, additional time for transmission (TX) scanning and tracer uptake is required in PET studies with animal-dedicated PET scanners because post-injection TX scanning is not available in these systems. The aim of this study was to validate a template-guided AC (TGAC) method that does not require TX PET data for AC in cat 2-deoxy-2-[F-18fluoro-D-glucose (FDG) brain PET imaging.

Methods

PET scans were acquired using a microPET Focus 120 scanner. TX data were obtained using a 68Ge point source before the injection of FDG. To generate the attention map (μ-map) template for the TGAC, a target image of emission (EM) PET was selected, and spatial normalization parameters of individual EM data onto the target were reapplied to the corresponding μ-maps. The inverse transformations of the μ-map template into the individual spaces were performed, and the transformed template was forward projected to generate the AC factor. The TGAC method was compared with measured AC (MAC) and calculated AC (CAC) methods using region of interest (ROI) and SPM analyses.

Results

The ROI analysis showed that the activity of the TGAC EM PET images strongly correlated with those of the MAC data (\( y = 0.98x + 0.01 \), R 2 = 0.96). In addition, no significant difference was observed in the SPM analysis. By contrast, the CAC showed a significantly higher uptake in the deep gray regions compared to the MAC (corrected P < 0.05). The ROI correlation with MAC was worse than with the TGAC (R 2 = 0.84). In SPM analysis for the voxel-wise group comparisons between before and after the induction of deafness, only the TGAC showed equivalent results with the MAC.

Conclusions

The TGAC was reliable in cat FDG brain PET studies in terms of compatibility with the MAC method. The TGAC might be a useful option for increasing study throughput and decreasing the probability of subject movement. In addition, it might reduce the possible biological effects of long-term anesthesia on the cat brain in investigations using animal-dedicated PET scanners.

Key words

Attenuation correction Animal PET Spatial normalization Cat Brain 

Notes

Acknowledgements

This work was supported by grants from the World Class University Program (R32-10142), Atomic Energy R&D Program (2008-03852), Basic Atomic Energy Research Institute Program (M20508050002-05B0805-00210, 2008-02334), Nuclear R&D Program (M20702010002-08N0201-00200, 20090078289), and Brain Research Center of the 21st Century Frontier Research Program (M103KV010014-04K2201-01400) through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology.

References

  1. 1.
    Pomper MG, Lee JS (2005) Small animal imaging in drug development. Curr Pharm Des 11:3247–3272CrossRefPubMedGoogle Scholar
  2. 2.
    Riemann B, Schafers KP, Schober O et al (2008) Small animal PET in preclinical studies: opportunities and challenges. Q J Nucl Med Mol Imaging 52:215–221PubMedGoogle Scholar
  3. 3.
    Kalter SS, Heberling RL, Cooke AW et al (1997) Viral infections of nonhuman primates. Lab Anim Sci 47:461–467PubMedGoogle Scholar
  4. 4.
    Kim JS, Lee JS, Park MH et al (2008) Assessment of cerebral glucose metabolism in cat deafness model: strategies for improving the voxel-based statistical analysis for animal PET studies. Mol Imaging Biol 10:154–161CrossRefPubMedGoogle Scholar
  5. 5.
    Knoess C, Siegel S, Smith A et al (2003) Performance evaluation of the microPET R4 PET scanner for rodents. Eur J Nucl Med Mol Imaging 30:737–747PubMedGoogle Scholar
  6. 6.
    Kim JS, Lee JS, Lee JJ et al (2006) Effects of attenuation and scatter corrections in cat brain PET images using microPET R4 scanner. Nucl Med Mol Imaging 40:40–47Google Scholar
  7. 7.
    Kim JS, Lee JS, Park M-H et al (2007) Limited performance of calculated attenuation correction for brain PET of cat [abstract]. J Nucl Med 48(suppl):411Google Scholar
  8. 8.
    Vandervoort E, Sossi V (2008) Impact of contamination from scattered photons in singles-mode transmission data on quantitative small-animal PET Imaging. J Nucl Med. 49:1852–1861CrossRefPubMedGoogle Scholar
  9. 9.
    Carson RE, Daube-Witherspoon ME, Green MV (1988) A method for postinjection PET transmission measurements with a rotating source. J Nucl Med 29:1558–1567PubMedGoogle Scholar
  10. 10.
    Chow PL, Rannou FR, Chatziioannou AF (2005) Attenuation correction for small animal PET tomographs. Phys Med Biol 50:1837–1850CrossRefPubMedGoogle Scholar
  11. 11.
    Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK (2002) PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 29:922–927CrossRefPubMedGoogle Scholar
  12. 12.
    Kinahan PE, Townsend DW, Beyer T, Sashin D (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25:2046–2053CrossRefPubMedGoogle Scholar
  13. 13.
    Lehnert W, Meikle SR, Siegel S, Newport D, Banati RB, Rosenfeld AB (2006) Evaluation of transmission methodology and attenuation correction for the microPET Focus 220 animal scanner. Phys Med Biol 51:4003–4016CrossRefPubMedGoogle Scholar
  14. 14.
    Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P (1999) Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE T Med Imaging 18:393–403CrossRefGoogle Scholar
  15. 15.
    Xu EZ, Mullani NA, Gould KL, Anderson WL (1991) A segmented attenuation correction for PET. J Nucl Med 32:161–165PubMedGoogle Scholar
  16. 16.
    Nuyts J, Dupont P, Stroobants S, Maes A, Mortelmans L, Suetens P (1999) Evaluation of maximum-likelihood based attenuation correction in positron emission tomography. IEEE T Nucl Sci 46:1136–1141CrossRefGoogle Scholar
  17. 17.
    Stodilka RZ, Kemp BJ, Prato FS, Kertesz A, Kuhl D, Nicholson RL (2000) Scatter and attenuation correction for brain SPECT using attenuation distributions inferred from a head atlas. J Nucl Med 41:1569–1578PubMedGoogle Scholar
  18. 18.
    Montandon ML, Zaidi H (2005) Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging. Neuroimage 25:278–286CrossRefPubMedGoogle Scholar
  19. 19.
    Siegel S, Dahlbom M (1992) Implementation and evaluation of a calculated attenuation correction for PET. IEEE T Nucl Sci 39:1117–1121CrossRefGoogle Scholar
  20. 20.
    Weinzapfel BT, Hutchins GD (2001) Automated PET attenuation correction model for functional brain imaging. J Nucl Med 42:483–491PubMedGoogle Scholar
  21. 21.
    Kim JS, Lee JS, Im KC et al (2007) Performance measurement of the microPET focus 120 scanner. J Nucl Med 48:1527–1535CrossRefPubMedGoogle Scholar
  22. 22.
    Rogers JG, Harrop R, Kinahan PE (1987) The theory of three-dimensional image reconstruction for PET. IEEE T Med Imaging 6:239–243CrossRefGoogle Scholar
  23. 23.
    Huber JS, Moses WW, Jones WF, Watson CC (2002) Effect of 176Lu background on singles transmission for LSO-based PET cameras. Phys Med Biol 47:3535–3541CrossRefPubMedGoogle Scholar
  24. 24.
    Watson CC. New, faster, image-based scatter correction for 3D PET (2000) IEEE T Nucl Sci 47:1587–1594.CrossRefGoogle Scholar
  25. 25.
    Ashburner J, Friston KJ (1999) Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7:254–266CrossRefPubMedGoogle Scholar
  26. 26.
    Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ (1995) Spatial registration and normalization of images. Hum Brain Mapp 3:165–189CrossRefGoogle Scholar
  27. 27.
    Matsumura A, Mizokawa S, Tanaka M et al (2003) Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage 20:2040–2050CrossRefPubMedGoogle Scholar
  28. 28.
    Toyama H, Ichise M, Liow JS et al (2004) Evaluation of anesthesia effects on 18F-FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 31:251–256CrossRefPubMedGoogle Scholar
  29. 29.
    Woo SK, Lee TS, Kim KM et al (2008) Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET. Nucl Med Biol. 35:143–150CrossRefPubMedGoogle Scholar
  30. 30.
    Woody C, Kriplani A, O’Connor P et al (2004) RatCAP: a small, head-mounted PET tomograph for imaging the brain of an awake rat. Nucl Instrum Meth A 527:166–170CrossRefGoogle Scholar
  31. 31.
    Zhou VW, Kyme AZ, Meikle SR, Fulton R (2008) An event-driven motion correction method for neurological PET studies of awake laboratory animals. Mol Imaging Biol 10:315–324CrossRefPubMedGoogle Scholar
  32. 32.
    Smith RJ, Karp JS, Muehllehner G (1994) Post injection transmission scanning in a volume imaging PET camera. IEEE T Nucl Sci 41:1526–1531CrossRefGoogle Scholar
  33. 33.
    Yang H, Berger F, Tran C, Gambhir SS, Sawyers CL (2003) MicroPET imaging of prostate cancer in LNCAP-SR39TK-GFP mouse xenografts. Prostate 55:39–47CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang Y, Saylor M, Wen S et al (2006) Longitudinally quantitative 2-deoxy-2-18F-fluoro-D-glucose micro positron emission tomography imaging for efficacy of new anticancer drugs: a case study with bortezomib in prostate cancer murine model. Mol Imaging Biol 8:300–308CrossRefPubMedGoogle Scholar
  35. 35.
    Lee JS, Orita H, Gabrielson K et al (2007) FDG-PET for pharmacodynamic assessment of the fatty acid synthase inhibitor C75 in an experimental model of lung cancer. Pharm Res 24:1202–1207CrossRefPubMedGoogle Scholar
  36. 36.
    Ahn SH, Oh SH, Lee JS et al (2004) Changes of 2-deoxyglucose uptake in the rat auditory pathway after bilateral ablation of the cochlea. Hear Res 196:33–38CrossRefPubMedGoogle Scholar
  37. 37.
    Lee JS, Ahn SH, Lee DS et al (2005) Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images. Eur J Nucl Med Mol Imaging 32:696–701CrossRefPubMedGoogle Scholar
  38. 38.
    Judenhofer MS, Catana C, Swann BK et al (2007) PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology 244:807–814CrossRefPubMedGoogle Scholar
  39. 39.
    Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465CrossRefPubMedGoogle Scholar
  40. 40.
    Catana C, Procissi D, Wu Y et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A 105:3705–3710CrossRefPubMedGoogle Scholar
  41. 41.
    Hong SG, Song IC, Ito M et al (2008) An investigation into the use of geiger-mode solid-state photomultipliers for simultaneous PET and MRI acquisition. IEEE T Nucl Sci 55:882–888CrossRefGoogle Scholar
  42. 42.
    Hofmann M, Steinke F, Scheel V et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883CrossRefPubMedGoogle Scholar
  43. 43.
    Kim JS, Lee JS, Cheon GJ (2008) Physical artifact correction in nuclear medicine imaging: normalization and attenuation correction. Nucl Med Mol Imaging 42:112–117Google Scholar
  44. 44.
    Beyer T, Weigert M, Quick HH et al (2008) MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging 35:1142–1146CrossRefPubMedGoogle Scholar
  45. 45.
    Waldherr C, Mellinghoff IK, Tran C et al (2005) Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PET. J Nucl Med 46:114–120PubMedGoogle Scholar
  46. 46.
    Green LA, Nguyen K, Berenji B et al (2004) A tracer kinetic model for 18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET. J Nucl Med 45:1560–1570PubMedGoogle Scholar
  47. 47.
    Herrero P, Kim J, Sharp TL et al (2006) Assessment of myocardial blood flow using 15O-water and 1-11C-acetate in rats with small-animal PET. J Nucl Med 47:477–485PubMedGoogle Scholar
  48. 48.
    Kim SJ, Lee JS, Im KC et al (2008) Kinetic modeling of 3′-Deoxy-3′-18F-Fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 49:2057–2066CrossRefPubMedGoogle Scholar
  49. 49.
    van Velden FH, Kloet RW, van Berckel BN et al (2008) Impact of attenuation correction strategies on the quantification of high resolution research tomograph PET studies. Phys Med Biol 53:99–118CrossRefPubMedGoogle Scholar

Copyright information

© Academy of Molecular Imaging 2009

Authors and Affiliations

  • Jin Su Kim
    • 1
    • 2
  • Jae Sung Lee
    • 1
    • 3
    Email author
  • Min-Hyun Park
    • 4
    • 5
  • Kyeong Min Kim
    • 2
  • Seung-Ha Oh
    • 4
  • Gi Jeong Cheon
    • 2
  • In Chan Song
    • 6
  • Dae Hyuk Moon
    • 7
  • June-Key Chung
    • 1
    • 3
  • Dong Soo Lee
    • 1
  1. 1.Department of Nuclear Medicine and Interdisciplinary Program in Radiation Applied Life ScienceSeoul National University College of MedicineSeoulKorea
  2. 2.Molecular Imaging Research CenterKorea Institute of Radiological and Medical SciencesSeoulKorea
  3. 3.Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
  4. 4.Department of Otolaryngology and Research Center for Sensory Organs, Medical Research CenterSeoul National University College of MedicineSeoulKorea
  5. 5.Department of OtolaryngologySeoul Metropolitan Government Boramae Medical CenterSeoulKorea
  6. 6.Department of RadiologySeoul National University HospitalSeoulKorea
  7. 7.Department of Nuclear Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea

Personalised recommendations