Molecular Imaging and Biology

, Volume 12, Issue 3, pp 325–334 | Cite as

Antioxidants Improve Early Survival of Cardiomyoblasts After Transplantation to the Myocardium

  • Martin Rodriguez-PorcelEmail author
  • Olivier Gheysens
  • Ramasamy Paulmurugan
  • Ian Y. Chen
  • Karen M. Peterson
  • Jürgen K. Willmann
  • Joseph C. Wu
  • Xiangyang Zhu
  • Lilach O. Lerman
  • Sanjiv S. Gambhir
Research Article



We tested the hypothesis that modulation of the microenvironment (using antioxidants) will increase stem cell survival in hypoxia and after transplantation to the myocardium.


Rat cardiomyoblasts were stably transfected with a reporter gene (firefly luciferase) for bioluminescence imaging (BLI). First, we examined the role of oxidative stress in cells under hypoxic conditions. Subsequently, stem cells were transplanted to the myocardium of rats using high-resolution ultrasound, and their survival was monitored daily using BLI.


Under hypoxia, oxidative stress was increased together with decreased cell survival compared to control cells, both of which were preserved by antioxidants. In living subjects, oxidative stress blockade increased early cell survival after transplantation to the myocardium, compared to untreated cells/animals.


Modulation of the local microenvironment (with antioxidants) improves stem cell survival. Increased understanding of the interaction between stem cells and their microenvironment will be critical to advance the field of regenerative medicine.

Key words

Bioluminescence Firefly luciferase Myoblasts Molecular imaging Stem cell Oxidative stress Myocardium Antioxidants 



This work was supported in part by National Health Lung Blood Institute R01 HL078632 (SSG), National Cancer Institute ICMIC CA114747 P50 (SSG), National Institutes of Health K99-R00 HL88048 (MR-P), and the Mayo Clinical Scholarship Program, Mayo Clinic College of Medicine, Rochester, Minnesota (MR-P).


  1. 1.
    American Heart Association. Heart disease and stroke statistics—2009 update. (accessed January 2009)
  2. 2.
    Roger VL, Jacobsen SJ, Weston SA, et al. (2002) Trends in the incidence and survival of patients with hospitalized myocardial infarction, Olmsted County, Minnesota, 1979 to 1994. Ann Intern Med 136:341-348PubMedGoogle Scholar
  3. 3.
    Orlic D, Kajstura J, Chimenti S, et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701-705CrossRefPubMedGoogle Scholar
  4. 4.
    Welt FG, Losordo DW (2006) Cell therapy for acute myocardial infarction: curb your enthusiasm? Circulation 113:1272-1274CrossRefPubMedGoogle Scholar
  5. 5.
    Engelmann MG, Franz WM (2006) Stem cell therapy after myocardial infarction: ready for clinical application? Curr Opin Mol Ther 8:396-414PubMedGoogle Scholar
  6. 6.
    Suzuki K, Murtuza B, Beauchamp JR, et al. (2004) Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. Faseb J 18:1153-1155PubMedGoogle Scholar
  7. 7.
    Wu JC, Chen IY, Sundaresan G, et al. (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108:1302-1305CrossRefPubMedGoogle Scholar
  8. 8.
    Muller-Ehmsen J, Whittaker P, Kloner RA, et al. (2002) Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 34:107-116CrossRefPubMedGoogle Scholar
  9. 9.
    Gnecchi M, He H, Liang OD, et al. (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367-368CrossRefPubMedGoogle Scholar
  10. 10.
    Urbinati F, Lotti F, Facchini G, et al. (2005) Competitive engraftment of hematopoietic stem cells genetically modified with a truncated erythropoietin receptor. Hum Gene Ther 16:594-608CrossRefPubMedGoogle Scholar
  11. 11.
    Nakamura Y, Yasuda T, Weisel RD, Li RK (2006) Enhanced cell transplantation: preventing apoptosis increases cell survival and ventricular function. Am J Physiol Heart Circ Physiol 291:H939-H947CrossRefPubMedGoogle Scholar
  12. 12.
    Niagara MI, Haider H, Jiang S, Ashraf M (2007) Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res 100:545-555CrossRefPubMedGoogle Scholar
  13. 13.
    Rodriguez-Porcel M, Herrman J, Chade AR, et al. (2004) Long-term antioxidant intervention improves myocardial microvascular function in experimental hypertension. Hypertension 43:493-498CrossRefPubMedGoogle Scholar
  14. 14.
    Rodriguez-Porcel M, Lerman A, Best PJ, et al. (2001) Hypercholesterolemia impairs myocardial perfusion and permeability: role of oxidative stress and endogenous scavenging activity. J Am Coll Cardiol 37:806-815CrossRefGoogle Scholar
  15. 15.
    Griendling KK, Alexander RW (1997) Oxidative stress and cardiovascular disease. Circulation 96:3264-3265PubMedGoogle Scholar
  16. 16.
    Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912-1916CrossRefPubMedGoogle Scholar
  17. 17.
    Napoli C, Williams-Ignarro S, de Nigris F, et al. (2005) Beneficial effects of concurrent autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the mouse hindlimb. Proc Natl Acad Sci U S A 102:17202-17206CrossRefPubMedGoogle Scholar
  18. 18.
    Contag CH, Ross BD (2002) It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging 16:378-387CrossRefPubMedGoogle Scholar
  19. 19.
    Negrin RS, Contag CH (2006) In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev 6:484-90Google Scholar
  20. 20.
    Shah K, Jacobs A, Breakefield XO, Weissleder R (2004) Molecular imaging of gene therapy for cancer. Gene Ther 11:1175-1187CrossRefPubMedGoogle Scholar
  21. 21.
    Wu JC, Tseng JR, Gambhir SS (2004) Molecular imaging of cardiovascular gene products. J Nucl Cardiol 11:491-505CrossRefPubMedGoogle Scholar
  22. 22.
    Rodriguez-Porcel M, Gheysens O, Chen IY, Wu JC, Gambhir SS (2005) Image-guided cardiac cell delivery using high-resolution small-animal ultrasound. Mol Ther 12:1142-1147CrossRefPubMedGoogle Scholar
  23. 23.
    Gheysens O, Lin S, Cao F, et al. (2006) Noninvasive evaluation of immunosuppressive drug efficacy on acute donor cell survival. Mol Imaging Biol 8:163-170CrossRefPubMedGoogle Scholar
  24. 24.
    Marwaha A, Lokhandwala MF (2006) Tempol reduces oxidative stress and restores renal dopamine D1-like receptor- G protein coupling and function in hyperglycemic rats. Am J Physiol 291:F58-66CrossRefGoogle Scholar
  25. 25.
    Chen Y, Pearlman A, Luo Z, Wilcox CS (2007) Hydrogen peroxide mediates a transient vasorelaxation with tempol during oxidative stress. Am J Physiol Heart Circ Physiol 293:H2085-H2092CrossRefPubMedGoogle Scholar
  26. 26.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63CrossRefPubMedGoogle Scholar
  27. 27.
    Ksiazek K, Piwocka K, Brzezinska A, et al. (2006) Early loss of proliferative potential of human peritoneal mesothelial cells in culture: the role of p16INK4a-mediated premature senescence. J Appl Physiol 100:988-995CrossRefPubMedGoogle Scholar
  28. 28.
    Herrmann J, Saguner AM, Versari D, et al. (2007) Chronic proteasome inhibition contributes to coronary atherosclerosis. Circ Res 101:865-874CrossRefPubMedGoogle Scholar
  29. 29.
    Lim SD, Sun C, Lambeth JD, et al. (2005) Increased Nox1 and hydrogen peroxide in prostate cancer. The Prostate 62:200-207CrossRefPubMedGoogle Scholar
  30. 30.
    Yang CS, Lee HM, Lee JY, et al. (2007) Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia. Journal of Neuroinflammation 4:27CrossRefPubMedGoogle Scholar
  31. 31.
    Esterhazy D, King MS, Yakovlev G, Hirst J (2008) Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry 47:3964-3971CrossRefPubMedGoogle Scholar
  32. 32.
    Honjo T, Otsui K, Shiraki R, et al. (2008) Essential role of NOXA1 in generation of reactive oxygen species induced by oxidized low-density lipoprotein in human vascular endothelial cells. Endothelium 15:137-141CrossRefPubMedGoogle Scholar
  33. 33.
    Morten KJ, Ackrell BA, Melov S (2006) Mitochondrial reactive oxygen species in mice lacking superoxide dismutase 2: attenuation via antioxidant treatment. J Biol Chem 281:3354-3359CrossRefPubMedGoogle Scholar
  34. 34.
    Chade AR, Mushin OP, Zhu X, et al. (2005) Pathways of renal fibrosis and modulation of matrix turnover in experimental hypercholesterolemia. Hypertension 46:772-779CrossRefPubMedGoogle Scholar
  35. 35.
    Chade AR, Rodriguez-Porcel M, Herrmann J, et al. (2004) Antioxidant intervention blunts renal injury in experimental renovascular disease. J Am Soc Nephrol 15:958-966CrossRefPubMedGoogle Scholar
  36. 36.
    Cao YA, Wagers AJ, Beilhack A, et al. (2004) Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci U S A 101:221-226CrossRefPubMedGoogle Scholar
  37. 37.
    Krishnan M, Park JM, Cao F, et al. (2006) Effects of epigenetic modulation on reporter gene expression: implications for stem cell imaging. Faseb J 20:106-108PubMedGoogle Scholar
  38. 38.
    Chen LS, Tassone F, Sahota P, Hagerman PJ (2003) The (CGG)n repeat element within the 5′ untranslated region of the FMR1 message provides both positive and negative cis effects on in vivo translation of a downstream reporter. Hum Mol Genet 12:3067-3074CrossRefPubMedGoogle Scholar
  39. 39.
    Wu JC, Spin JM, Cao F, et al. (2006) Transcriptional profiling of reporter genes used for molecular imaging of embryonic stem cell transplantation. Physiol Genomics 25:29-38CrossRefPubMedGoogle Scholar
  40. 40.
    Kutschka I, Kofidis T, Chen IY, et al. (2006) Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation 114:I174-I180PubMedGoogle Scholar

Copyright information

© Academy of Molecular Imaging 2009

Authors and Affiliations

  • Martin Rodriguez-Porcel
    • 1
    Email author
  • Olivier Gheysens
    • 2
  • Ramasamy Paulmurugan
    • 3
  • Ian Y. Chen
    • 3
    • 4
  • Karen M. Peterson
    • 1
  • Jürgen K. Willmann
    • 3
  • Joseph C. Wu
    • 3
  • Xiangyang Zhu
    • 5
  • Lilach O. Lerman
    • 5
  • Sanjiv S. Gambhir
    • 3
    • 4
  1. 1.Division of Cardiovascular Diseases, Department of Internal MedicineMayo Clinic College of MedicineRochesterUSA
  2. 2.Department of Nuclear MedicineUniversity Hospital LeuvenLeuvenBelgium
  3. 3.Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Division of Nuclear MedicineStanford UniversityStanfordUSA
  4. 4.Department of BioengineeringStanford UniversityStanfordUSA
  5. 5.Division of Nephrology and Hypertension, Department of Internal MedicineMayo Clinic College of MedicineRochesterUSA

Personalised recommendations