Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Acquisition Parameters for Oncologic Imaging with a New SPECT/Multislice CT Scanner



Single photon emission computed tomography/computed tomography (SPECT/CT) delivers in a single imaging modality the functional–metabolic information from the SPECT image, combined with the detailed anatomical information from a diagnostic quality CT scanner.


In this review, we provide the details for the acquisition, processing, and display of the SPECT, as well as the CT, and the fused SPECT/CT images, with one of the newest devices that combines a dual-headed gamma camera with a multislice CT scanner. Also, we go over the performance characteristics, including the planning and installation requirements for this type of scanners. In addition, we describe what are the current and feasible near-future applications of this new and exciting hybrid imaging modality.


The ability to combine an optimized state-of-the-art SPECT image, with resolutions down to 5 mm, with a diagnostic quality CT image—using slices as thin as 1.25 mm—provides a diagnostic advantage that potentially can deliver a more convenient and faster diagnosis, with clinical implications in a significant percentage of patients. This imaging technique has been investigated in a wide range of studies for the oncologic patient, including but not limited to bone scintigraphy, 111In-pentetreotide scintigraphy, lymphoscintigraphy, 67Ga and labeled leukocyte infection imaging, 131I-metaiodobenzylguanidine, parathyroid scintigraphy, 131I diagnostic scintigraphy, and 111In ProstaScint, and for planning of radionuclide therapy.


Therefore, this evolving and exciting imaging modality will continue to grow and define its place as an integral part of the evaluation of the cancer patient.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.


  1. 1.

    Von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 2:405–422

  2. 2.

    Lang TF, Hasegawa BH, Liew SC et al (1992) Description of a prototype emission–transmission CT imaging system. J Nucl Med 33:1881–1887

  3. 3.

    O’Connor MK, Kemp BJ (2006) Single-photon emission computed tomography/computed tomography: basic instrumentation and innovations. Semin Nucl Med 36:258–266

  4. 4.

    Ruf J, Seehofer D, Denecke T et al (2007) Impact of image fusion and attenuation correction by SPECT–CT on the scintigraphic detection of parathyroid adenomas. Nuklearmedizin 46:15–21

  5. 5.

    Eschman SM, Horger M, Phannenberg AC et al (2002) Improved specificity of bone scintigraphy by combined transmission and emission tomography (TET). J Nucl Med 43:340P

  6. 6.

    Ingui CJ, Shah NP, Oates MF (2006) Endocrine neoplasm scintigraphy: added value of fusing SPECT/CT images compared with traditional side-by-side analysis. Clin Nucl Med 31:665–672

  7. 7.

    Mirtcheva RM, Kostakoglu L, Goldsmith SJ (2003) SPECT+CT fusion imaging in 111In WBC scintigraphy. J Nucl Med 44:341P–342P

  8. 8.

    Dewaraja YK, Wilderman SJ, Ljungberg M, Koral KF, Zasadny K, Kaminski MS (2005) Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med 46:840–849

  9. 9.

    Coleman DD, RE GMJ et al (2006) Procedure guideline for SPECT/CT imaging 1.0. J Nucl Med 47:1227–1234

  10. 10.

    Even-Sapir E, Fluseser G, Lerman H, Lievshitz G, Metser U (2007) SPECT/multislice low-dose CT: a clinically relevant constituent in the imaging algorithm of nononcologic patients referred for bone scintigraphy. J Nucl Med 48:319–324

  11. 11.

    Nakahara T, Shigematsu N, Fujii M et al (2006) Value of CT thallium-201 SPECT fusion imaging over SPECT alone for detection and localization of nasopharyngeal and maxillary cancers. Am J Roentgenol 187:825–829

  12. 12.

    Denecke T, Hildebrandt B, Lehmkuhl L et al (2005) Fusion imaging using a hybrid SPECT/CT camera improves port perfusion scintigraphy for control of hepatic arterial infusion of chemotherapy in colorectal cancer patients. Eur J Nucl Med Mol Imaging 32:1003–1010

  13. 13.

    Keidar Z, Israel O, Krausz Y (2003) SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 33:205–218

  14. 14.

    Even-Sapir E, Keidar Z, Sachs J et al (2001) The new technology of combined transmission and emission tomography in evaluation of endocrine carcinomas. J Nucl Med 42:998–1004

  15. 15.

    Pfanneberg AC, Eschmann SM, Horger M et al (2003) Benefit of anatomical functional image fusion in the diagnostic work-up of neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging 30:835–843

  16. 16.

    Schillaci O (2004) Functional–anatomical image fusion in neuroendocrine tumors. Cancer Biother Radiopharm 19:129–134

  17. 17.

    Delbeke D, Coleman RE, Guiberteau MJ et al (2006) Procedure guideline for SPECT/CT imaging 1.0. J Nucl Med 47:1227–1234

  18. 18.

    Schillaci O, Filippi L, Danieli R, Simonetti G (2007) Single-photon emission computed tomography/computed tomography in abdominal diseases. Semin Nucl Med 37:48–61

  19. 19.

    Schillaci O, Filippi L, Manni C, Santoni R (2007) Single-photon emission computed tomography/computed tomography in brain tumors. Semin Nucl Med 37:34–47

  20. 20.

    Utsunomiya D, Shiraishi S, Imuta M et al (2006) Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology 238:264–271

  21. 21.

    Romer W, Nomayr A, Uder M, Bautz W, Kuwert T (2006) SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med 47:1102–1106

  22. 22.

    Even-Sapir E, Flusser G, Lerman H et al (2007) SPECT/multislice low-dose CT: a clinical relevant constituent in the imaging algorithm of nononcologic patients referred for bone scintigraphy. J Nucl Med 48:319–324

  23. 23.

    Núñez R, Namwongprom S, Stachowiak A, Mar M, Won KS, Macapinlac HA (2006) Value of bone scintigraphy with a hybrid SPECT/multislice CT scanner to assess for osseous metastases. Eur J Nucl Med Mol Imaging 33(Supplement 2):S275

  24. 24.

    Mawlawi O, Erwin W, Pan T et al (2007) What is optimal minimum whole body bone SPECT scan duration that can replace planar bone scintigraphy? J Nucl Med 48(Supplement 2):120P

  25. 25.

    Gayed IW, Kim EE, Broussard WF et al (2005) The value of 99mTc-sestamibi SPECT/CT over conventional SPECT in the evaluation of parathyroid adenomas or hyperplasia. J Nucl Med 46:248–252

  26. 26.

    Krausz Y, Bettman L, Guralnik L et al (2006) Technetium-99 m-MIBI SPECT/CT in primary hyperparathyroidism. World J Surg 30:76–83

  27. 27.

    Lavely WC, Goetze S, Friedman KP et al (2007) Comparison of SPECT/CT, SPECT, and planar imaging with single- and dual-phase 99mTc-sestamibi parathyroid scintigraphy. J Nucl Med 48:1084–1089

  28. 28.

    Núñez R, Namwongprom S, Kim EE et al (2006) Additional value of parathyroid scintigraphy with a hybrid SPECT/multislice CT scanner in patients with primary hyperparathyroidism. World J Nucl Med 5(supplement 1):S71

  29. 29.

    Krausz Y, Keidar Z, Kogan I et al (2003) SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumors. Clin Endocrinol 59:565–573

  30. 30.

    Gabriel M, Hausler F, Bale R et al (2005) Image fusion of 99mTc-HYNIC-Tyr(3)-octreotide SPECT and diagnostic CT using and immobilisation device with external markers in patients with endocrine tumors. Eur J Nucl Med Mol Imaging 32:1440–1451

  31. 31.

    Hillel PG, van beek EJ, Taylor C et al (2006) The clinical impact of a combined gamma camera /CT imaging system on somatostatin receptor imaging of neuroendocrine tumors. Clin Radiol 61:579–587

  32. 32.

    Tharp K, Israel O, Hausmann J et al (2004) Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol Imaging 31:1435–1442

  33. 33.

    Ruf J, Lehmkuhl L, Bertram H et al (2004) Impact of SPECT and integrated low-dose CT after radioiodine therapy on the management of patients with thyroid carcinoma. Nucl Med Commun 25:1177–1182

  34. 34.

    Yamamoto Y, Nishiyama Y, Monden T, Matsumura Y, Satoh K, Ohkawa M (2003) Clinical usefulness of fusion of 131-I SPECT and CT images in patients with differentiated thyroid carcinoma. J Nucl Med 44:1905–1910

  35. 35.

    Lerman H, Mester U, Lievshitz G, Sperber F, Shneebaum S, Even-Sapir E (2006) Lymphoscintigraphic sentinel node identification in patients with breast cancer: the role of SPECT/CT. Eur J Nucl Med Mol Imaging 33:329–337

  36. 36.

    Lerman H, Lievshitz G, Zak O, Mester U, Schneebaum S, Even-Sapir E (2007) Improved sentinel node identification by SPECT/CT in overweight patients with breast cancer. J Nucl Med 48:201–206

  37. 37.

    Even-Sapir F, Lerman H, Lieshitz G et al (2003) Lymphoscintigraphy for sentinel node mapping using a hybrid SPECT/CT system. J Nucl Med 44:1413–1420

  38. 38.

    Khafif A, Schneebaum S, Fliss DM et al (2006) Lymphoscintigraphy for sentinel node mapping using a hybrid single photon emission CT (SPECT)/CT system in the oral cavity squamous cell carcinoma. Head Neck 28:874–879

  39. 39.

    Bilde A, Von Buchwald C, Mortensen J et al (2006) The role of SPECT–CT in the lymphoscintigraphic identification of sentinel nodes in patients with oral cancer. Acta Otoraryngol 126:1096–1103

  40. 40.

    Keski-Santi H, Matzke S, Kauppinen T, Tornwall J, Atula T (2006) Sentinel lymph node mapping using SPECT-CT fusion imaging in patients with oral cavity squamous cell carcinoma. Eur Arch Otorhinolaryngol 263:1008–1012

  41. 41.

    Husarik DB, Steinert HC (2007) Single-photon emission computed tomography/computed tomography for sentinel node mapping in breast cancer. Semin Nucl Med 37:29–33

  42. 42.

    Meller J, Sahlmann CO, Scheel AK (2007) 18F-FDG PET and PET/CT in fever of unknown origin. J Nucl Med 48:35–45

  43. 43.

    Bar-Shalom R, Yefremov N, Guralik L, Keidar Z, Engel A, Nitecki S, Israel O (2006) SPECT/CT using 67Ga and 111In-labelled leukocyte scintigraphy for diagnosis of infection. J Nucl Med 47:587–594

  44. 44.

    Ozer S, Dobrozemsky G, Kienast O et al (2004) Value of combined XCT/SPECT technology for avoiding false positive planar 123I-MIBG scintigraphy. Nuklearmedizin 43:164–170

  45. 45.

    Franzius C, Hermann K, Weckesser M et al (2006) Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med 47:1635–1642

  46. 46.

    Even-Sapir E, Keidar Z, Sachs J et al (2001) The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasms. J Nucl Med 42:998–1004

  47. 47.

    Soddee DB, Nelson AD, Faulhaber PF et al (2005) Update on fused capromab pendetide imaging of prostate cancer. Clin Prostate Cancer 3:230–238

  48. 48.

    Seltzer MA, Barbaric Z, Belldegrun A et al (1999) Comparison of helical computed tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol 162:1322–1328

  49. 49.

    Schettino CJ, Kramer EL, Noz ME et al (2004) Impact of fusion of indium-111 capromab pendetide volume data sets with those from MRI or CT in patients with recurrent prostate cancer. Am J Roentgenol 183:519–524

  50. 50.

    Manyak MJ, Hinkle GH, Olsen JO et al (1999) Immunoscintigraphy with indium-111-capromab pendetide: evaluation before definitive therapy in patients with prostate cancer. Urology 54:1058–1063

  51. 51.

    Ellis RJ, Vertocnik A, Sodee B et al (2003) Combination conformal radiotherapy and radioimmunoguided transperineal 103Pd implantation for patients with intermediate and unfavorable risk prostate adenocarcinoma. Brachytherapy 2:215–222

  52. 52.

    Gayed IW, Chang J, Kim EE et al (2008) Lung perfusion imaging can risk stratify lung cancer patients for the development of pulmonary complications after chemoradiation. J Thorac Oncol 8:858–864

  53. 53.

    Kadrmas DJ, Frey EC, Karimi SS et al (1998) Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 43:857–873

  54. 54.

    Royal HD, Brown ML, Drum DE et al (1998) Procedure guideline for hepatic and splenic imaging. Society of Nuclear Medicine. J Nucl Med 39:1114–1116

  55. 55.

    Ziesman HA, Silverman PM, Patterson J et al (1991) Improved detection of small cavernous hemangiomas of the liver with high resolution three headed SPECT. J Nucl Med 32:2086–2091

  56. 56.

    Schillaci O, Danieli R, Manni C et al (2004) Technetium-99m-labelled red blood cell imaging in the diagnosis of hepatic haemangiomas: the role of SPECT/CT with a hybrid camera. Eur J Nucl Mol Imaging 31:1011–1015

  57. 57.

    Horger M, Eschemann SM, Lengerke C et al (2003) Improved detection of splenosis in patients with haematological disorders: the role of combined transmission–emission tomography. Eur J Nucl Med Mol Imaging 30:316–319

  58. 58.

    Delman T, Shah NP, Oates ME (2006) Thallium/gallium scintigraphy revisited: added value of SPECT/CT/MR image fusion for characterizing brain lesions. Clin Nucl Med 31:118

  59. 59.

    Filippi L, Schillaci O, Santoni R et al (2006) Usefulness of SPECT/CT with a hybrid camera for the functional anatomical mapping of primary brain tumors by [Tc99m] tetrofosmin. Cancer Biother Radiopharm 21:41–48

  60. 60.

    Sulkin TV, Cousens C (2008) SPECT/CT cerebral perfusion scintigraphy; is the low dose CT component of diagnostic value? Clin Radiol 63:289–298

  61. 61.

    Hayashi M, Deguchi J, Utsunomiya K et al (2005) Comparison methods of attenuation and scatter correction in brain perfusion SPECT. J Nucl Med Technol 33:224–229

Download references

Author information

Correspondence to Rodolfo Núñez.


Appendix 1

SPECT Acquisition Parameters

The following are the acquisition parameters employed:

  • 128 views over 360° (64 views per head with a 180° gantry rotation; 64 views over 360° for 131I and 123I)

  • 128 × 128 matrix

  • 4.8 mm per pixel (3.3 mm for brain)

  • Step-and-shoot noncircular orbit

  • Axial FOV 38.7 cm (26.7 cm for brain)

  • Each photopeak of each radionuclide acquired separately

  • Upper and lower scatter windows adjacent to each photopeak acquired

SPECT Acquisition Times Per View for Various SPECT/CT Studies

  • 99mTc-MDP 21 s per view

  • 99mTc-CEA (3 h) 30 s per view

  • 99mTc-CEA (24 h) 60 s per view

  • 99mTc-RBC (hemangioma) 25 s per view

  • 99mTc-SC (liver/spleen) 25 s per view

  • 99mTc-SC (lymphoscintigraphy) 22 s per view

  • 99mTc-MIBI parathyroid 22 s per view

  • 99mTc-MAA (lung) 19 s per view

  • 99mTc-MAA (liver for SIR-Spheres) 34 s per view

  • 67Ga-citrate 25 s per view

  • 123I-MIBG (4 h) 18 s per view

  • 123I-MIBG (24 h) 42 s per view

  • 111In-octreotide 28 s per view

  • 111In-zevalin 28 s per view

  • 111In-WBC 38 s per view

  • 111In-ProstaScint 42 s per view

  • 131I-NaI 36 s per view

  • 131I-NP59 56 s per view

  • 90Y SIR-Spheres (bremsstrahlung, 78 keV ± 15% window) 28 s per view

CT Acquisition Parameters

  • kVp 130

  • Reference effective 90 mAs (200 for brain)

  • CARE dose 4D radiation dose reduction algorithm (incorporating both automatic exposure control and depth of material on-the-fly milliampere adjustment)

  • Collimation 6 × 2.0 mm (6 × 1.0 for bone extremity and parathyroid head and neck, H & N)

  • Pitch 1.2 (0.8 for brain)

  • Rotation speed 0.6 s per 360° rotation (1.0 for brain and parathyroid H & N)

  • Time 16 s (28 for brain, 32 for bone extremity, 54 for parathyroid H & N)

  • Scan length: same as SPECT axial FOV

Appendix 2

CT Reconstruction

Diagnostic CT

  • Slice thickness/step 2.5/2.0 mm (brain, all H & N, chest, abdomen, and pelvis), 1.25/1.0 mm (bone extremity and parathyroid H & N)

  • Reconstruction FOV 36 cm (all H & N, chest, and abdomen), 25 cm (brain, parathyroid H & N thin slice [1.25/1.0], 44 cm (pelvis, bone extremity)

  • Reconstructions (Fig. 2): soft tissue: B31s (H31s brain) medium smooth + filter; lung: B70s sharp filter (head and neck, chest); bone: B70s sharp (99mTc bone SPECT–CT only); parathyroid: B50s moderate sharp

Attenuation Correction CT

  • Slice thickness/step 5/5 mm (chest, abdomen, pelvis, and bone extremity), 3.0/3.0 mm (brain, H & N)

  • Reconstruction FOV 50 cm (25 cm for brain)

  • Reconstruction: B08s (H08s brain) smooth filter (for generating SPECT AC map)

SPECT Iterative Reconstruction

  • Ordered subset expectation maximization (OSEM) algorithm

  • 16 subsets (eight for 131I and 123I)

  • Eight iterations

  • 3D system resolution recovery

  • Each photopeak reconstructed separately and outputs summed

  • Separate reconstructions without and with attenuation and scatter correction

  • Scatter correction: dual-energy window (photopeaks with lower scatter window only); triple-energy window (photopeaks with both upper and lower scatter windows)

  • Scatter window weighting factors 0.5 (except 111In 172 keV upper and 247 lower), 172 keV upper 0.9375; 247 keV lower 0.75

  • Gaussian 3D postreconstruction filter

SPECT Reconstruction Gaussian Filtering

For the full widths at half maximum of the 3D Gaussian filter that is applied to finish the SPECT reconstruction as follows:

  • For all 99mTc radiotracers 5 mm

  • 67Ga-citrate 8.4 mm

  • 123I-MIBG 9.6 mm

  • For all 111In-radiotracers (except ProstaScint) 9.6 mm

  • 111In ProstaScint 10 mm

  • 131I 12 mm

  • 90Y SIR-Spheres 9.6 mm

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Núñez, R., Erwin, W.D., Wendt, R.E. et al. Acquisition Parameters for Oncologic Imaging with a New SPECT/Multislice CT Scanner. Mol Imaging Biol 12, 110–138 (2010). https://doi.org/10.1007/s11307-009-0266-4

Download citation

Key words

  • SPECT/multislice CT scanner
  • Acquisition parameters
  • Oncologic imaging