Molecular Imaging and Biology

, Volume 12, Issue 2, pp 155–162

In Vivo Imaging of Sentinel Nodes Using Fluorescent Silica Nanoparticles in Living Mice

  • Yong Hyun Jeon
  • Young-Hwa Kim
  • Kihwan Choi
  • Jing Yu Piao
  • Bo Quan
  • Yun-Sang Lee
  • Jae Min Jeong
  • June-Key Chung
  • Dong Soo Lee
  • Myung Chul Lee
  • Jaetae Lee
  • Doo Soo Chung
  • Keon Wook Kang
Research Article

Abstract

Purpose

We examine the feasibility of fluorescent imaging system for sentinel lymph node detection by using functionalized silica nanoparticles.

Materials and Methods

We developed a functionalized RITC-SiO2 nanoparticles containing fluorescent dye, C28H31N2O3Cl (rhodamine B isothiocyanate) inside, and subsequently synthesized 68Ga-NOTA-RITC-SiO2 nanoparticles.

Results

At 5 min after RITC-doped silica nanoparticles injection, fluorescent signals were shown in both right axillary lymph node (ALN) and injection site of living mice. Fluorescent signals were also observed at these locations in a biodistribution study. In addition, fluorescence was detected in frozen ALN sections microscopically. The percentages of doses injected per gram of tissue of axillary and brachial lymph nodes near footpad treated with 68Ga-NOTA-RITC-SiO2 nanoparticles were 308.3 ± 3.4 and 41.5 ± 6.1, respectively. Little 68Ga radioactivity was found in other organs.

Conclusion

Our data provide strong evidence that functionalized silica nanoparticles has a promising potential as organic lymphatic tracer in biomedical imaging such as pre- and intraoperative surgical guidance.

Key words

Silica nanoparticles Sentinel node Optical imaging 

Supplementary material

11307_2009_262_MOESM1_ESM.pdf (483 kb)
Table S1Biodistribution of 68Ga-NOTA-RITC-SiO2 nanoparticles in nude mice. The %ID/g values of axillary and brachial lymph nodes near footpad treated with 68Ga-NOTA-RITC-SiO2 nanoparticles were 308.3 ± 3.4 and 41.5 ± 6.1, respectively. Little 68Ga radioactivity was found in other organs. (e.g., liver, lung, brain, spleen, and kidney) ALN axillary lymph node, IN inguinal lymph node, SN sciatic lymph node, BLN brachial lymph node, SCN superficial cervical lymph node. Data are expressed as %ID/g of tissue. n = 5 mice (PDF 482 KB)

References

  1. 1.
    Radovanovic Z, Golubovic A, Plzak A, Stojiljkovic B, Radovanovic D (2004) Blue dye versus combined blue dye-radioactive tracer technique in detection of sentinel lymph node in breast cancer. Eur J Surg Oncol 30:913–917PubMedGoogle Scholar
  2. 2.
    Rodier JF, Velten M, Wilt M et al (2007) Prospective multicentric randomized study comparing periareolar and peritumoral injection of radiotracer and blue dye for the detection of sentinel lymph node in breast sparing procedures: FRANSENODE trial. J Clin Oncol 25:3664–3669CrossRefPubMedGoogle Scholar
  3. 3.
    Roberts AA, Cochran AJ (2004) Pathologic analysis of sentinel lymph nodes in melanoma patients: current and future trends. J Surg Oncol 85:152–161CrossRefPubMedGoogle Scholar
  4. 4.
    Aikou T, Kitagawa Y, Kitajima M et al (2006) Sentinel lymph node mapping with GI cancer. Cancer Metastasis Rev 25:269–277CrossRefPubMedGoogle Scholar
  5. 5.
    Nejc D, Wrzesien M, Piekarski J et al (2006) Sentinel node biopsy in patients with breast cancer—evaluation of exposure to radiation of medical staff. Eur J Surg Oncol 32:133–138CrossRefPubMedGoogle Scholar
  6. 6.
    Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang T, Stilwell JL, Gerion D et al (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 6:800–808CrossRefPubMedGoogle Scholar
  8. 8.
    Sevick-Muraca EM, Sharma R, Rasmussen JC et al (2008) Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology 246:734–741CrossRefPubMedGoogle Scholar
  9. 9.
    Kobayashi H, Hama Y, Koyama Y et al (2007) Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 7:1711–1716CrossRefPubMedGoogle Scholar
  10. 10.
    Kim S, Lim YT, Soltesz EG et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97CrossRefPubMedGoogle Scholar
  11. 11.
    Pelosi E, Ala A, Bello M et al (2005) Impact of axillary nodal metastases on lymphatic mapping and sentinel lymph node identification rate in patients with early stage breast cancer. Eur J Nucl Med Mol Imaging 32:937–942CrossRefPubMedGoogle Scholar
  12. 12.
    Josephson L, Mahmood U, Wunderbaldinger P, Tang Y, Weissleder R (2003) Pan and sentinel lymph node visualization using a near-infrared fluorescent probe. Mol Imaging 2:18–23CrossRefPubMedGoogle Scholar
  13. 13.
    Simmons RM, Smith SM, Osborne MP (2001) Methylene blue dye as an alternative to isosulfan blue dye for sentinel lymph node localization. Breast J 7:181–183CrossRefPubMedGoogle Scholar
  14. 14.
    Rety F, Clement O, Siauve N et al (2000) MR lymphography using iron oxide nanoparticles in rats: pharmacokinetics in the lymphatic system after intravenous injection. J Magn Reson Imaging 12:734–739CrossRefPubMedGoogle Scholar
  15. 15.
    Karakousis CP, Velez AF, Spellman JE Jr, Scarozza J (1996) The technique of sentinel node biopsy. Eur J Surg Oncol 22:271–275CrossRefPubMedGoogle Scholar
  16. 16.
    Alex JC, Krag DN (1993) Gamma-probe guided localization of lymph nodes. Surg Oncol 2:137–143CrossRefPubMedGoogle Scholar
  17. 17.
    Alex JC, Weaver DL, Fairbank JT, Rankin BS, Krag DN (1993) Gamma-probe-guided lymph node localization in malignant melanoma. Surg Oncol 2:303–308CrossRefPubMedGoogle Scholar
  18. 18.
    Hirsch JI (1980) Use of blue dyes in lymphography. Am J Hosp Pharm 37:1182–1183PubMedGoogle Scholar
  19. 19.
    Yoon TJ, Yu KN, Kim E et al (2006) Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials. Small 2:209–215CrossRefPubMedGoogle Scholar
  20. 20.
    Wang J, Liu G, Lin Y (2006) Electroactive silica nanoparticles for biological labeling. Small 2:1134–1138CrossRefPubMedGoogle Scholar
  21. 21.
    Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258CrossRefPubMedGoogle Scholar
  22. 22.
    Yoon TJ, Kim JS, Kim BG et al (2005) Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew Chem Int Ed Engl 44:1068–1071CrossRefPubMedGoogle Scholar
  23. 23.
    Wang L, Tan W (2006) Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 6:84–88CrossRefPubMedGoogle Scholar
  24. 24.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  25. 25.
    Smith JE, Wang L, Tan W (2006) Bioconjugated silica-coated nanoparticles for bioseparation and bioanalysis. TrAC, Trends Anal Chem 25:848–855CrossRefGoogle Scholar
  26. 26.
    Santra S, Liesenfeld B, Dutta D et al (2005) Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. J Nanosci Nanotechnol 5:899–904CrossRefPubMedGoogle Scholar
  27. 27.
    Rutgers EJ (2008) Sentinel node biopsy: interpretation and management of patients with immunohistochemistry-positive sentinel nodes and those with micrometastases. J Clin Oncol 26:698–702CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang H, Yee D, Wang C (2008) Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine 3:83–91CrossRefPubMedGoogle Scholar
  29. 29.
    Chen K, Li ZB, Wang H, Cai W, Chen X (2008) Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 35:2235–2244CrossRefPubMedGoogle Scholar
  30. 30.
    Misra RD (2008) Quantum dots for tumor-targeted drug delivery and cell imaging. Nanomedicine 3:271–274CrossRefPubMedGoogle Scholar
  31. 31.
    Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRefPubMedGoogle Scholar
  32. 32.
    Kobayashi H, Brechbiel MW (2003) Dendrimer-based macromolecular MRI contrast agents: characteristics and application. Mol Imaging 2:1–10CrossRefPubMedGoogle Scholar
  33. 33.
    Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi H (2007) Two-color lymphatic mapping using Ig-conjugated near infrared optical probes. J Invest Dermatol 127:2351–2356CrossRefPubMedGoogle Scholar
  34. 34.
    Kim JS, Yoon TJ, Yu KN et al (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347CrossRefPubMedGoogle Scholar

Copyright information

© Academy of Molecular Imaging 2009

Authors and Affiliations

  • Yong Hyun Jeon
    • 1
    • 2
    • 3
    • 5
  • Young-Hwa Kim
    • 3
    • 6
  • Kihwan Choi
    • 4
  • Jing Yu Piao
    • 4
  • Bo Quan
    • 4
  • Yun-Sang Lee
    • 1
  • Jae Min Jeong
    • 1
  • June-Key Chung
    • 1
    • 2
    • 3
  • Dong Soo Lee
    • 1
  • Myung Chul Lee
    • 1
  • Jaetae Lee
    • 5
  • Doo Soo Chung
    • 4
  • Keon Wook Kang
    • 1
    • 2
    • 3
  1. 1.Department of Nuclear MedicineSeoul National University College of MedicineSeoulSouth Korea
  2. 2.Department of Tumor BiologySeoul National University College of MedicineSeoulSouth Korea
  3. 3.Department of Laboratory of Molecular Imaging and Therapy of Cancer Research InstituteSeoul National UniversitySeoulSouth Korea
  4. 4.Department of ChemistrySeoul National UniversitySeoulSouth Korea
  5. 5.Department of Nuclear Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
  6. 6.Department of Nuclear Medicine and Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea

Personalised recommendations