Molecular Imaging and Biology

, Volume 12, Issue 2, pp 192–197 | Cite as

COMT Val158Met Genotype Does Not Alter Cortical or Striatal Dopamine D2 Receptor Availability In Vivo

  • Mika M. Hirvonen
  • Kjell Någren
  • Juha O. Rinne
  • Ullamari Pesonen
  • Tero Vahlberg
  • Nora Hagelberg
  • Jarmo HietalaEmail author
Research Article



Catechol-O-methyl transferase (COMT) is a pivotal regulator of brain dopamine function with a region-specific role. COMT is important in dopamine elimination in the prefrontal cortex, whereas dopamine reuptake is the main mechanism for synaptic removal of dopamine in the striatum. We studied whether the functional COMT gene polymorphism (Val158Met) associates with altered dopamine D2 receptor binding characteristics in vivo hypothesizing an effect in the cortex but not in the striatum.


Samples of 38 and 45 Finnish healthy subjects scanned previously with PET and the D2/D3 receptor radioligands [11C]FLB457 or [11C]raclopride, respectively, were genotyped for the Val158Met polymorphism.


No significant associations were found between the Val158Met genotype and D2 receptor binding characteristics in the cortex or the striatum as measured with [11C]FLB457 and [11C]raclopride, respectively.


COMT genotype is not related with alterations in baseline D2 receptor availability in vivo in the cortex or the striatum. This information is useful for the interpretation of genetic studies on COMT in neuropsychiatry.

Key words

Binding potential Gene variation Human Neuropsychiatry Positron emission tomography 



We gratefully acknowledge the staff of Turku PET Centre (Turku, Finland), the Radiopharmaceutical Chemistry Laboratory of University of Turku (Turku, Finland), and the Department of Pharmacology, Drug Development, and Therapeutics of University of Turku (Turku, Finland). This study has been supported financially by EVO-funding, Turku University Central Hospital (13649 to J.H. and 13464 for J.O.R.) and by personal research grants from Oy H. Lundbeck Ab (to M.M.H.) and from Research and Science Foundation of Farmos (to M.M.H.).


  1. 1.
    Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW et al (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409:38–56CrossRefPubMedGoogle Scholar
  2. 2.
    Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, Ince E, Hersch SM et al (1995) The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 15:1714–1723PubMedGoogle Scholar
  3. 3.
    Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, Auh S, Sampson A (2001) Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol 432:119–136CrossRefPubMedGoogle Scholar
  4. 4.
    Sesack SR, Hawrylak VA, Guido MA, Levey AI (1998) Cellular and subcellular localization of the dopamine transporter in rat cortex. Adv Pharmacol 42:171–174CrossRefPubMedGoogle Scholar
  5. 5.
    Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM et al (2003) Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 116:127–137CrossRefPubMedGoogle Scholar
  6. 6.
    Mazei MS, Pluto CP, Kirkbride B, Pehek EA (2002) Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat. Brain Res 936:58–67CrossRefPubMedGoogle Scholar
  7. 7.
    Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT (2002) Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22:389–395PubMedGoogle Scholar
  8. 8.
    Karoum F, Chrapusta SJ, Egan MF (1994) 3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J Neurochem 63:972–979PubMedCrossRefGoogle Scholar
  9. 9.
    Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D et al (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A 95:9991–9996CrossRefPubMedGoogle Scholar
  10. 10.
    Huotari M, Garcia-Horsman JA, Karayiorgou M, Gogos JA, Mannisto PT (2004) D-amphetamine responses in catechol-O-methyltransferase (COMT) disrupted mice. Psychopharmacology (Berl) 172:1–10CrossRefGoogle Scholar
  11. 11.
    Yavich L, Forsberg MM, Karayiorgou M, Gogos JA, Mannisto PT (2007) Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J Neurosci 27:10196–10209CrossRefPubMedGoogle Scholar
  12. 12.
    Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I et al (1995) Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 34:4202–4210CrossRefPubMedGoogle Scholar
  13. 13.
    Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6:243–250CrossRefPubMedGoogle Scholar
  14. 14.
    Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S et al (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75:807–821CrossRefPubMedGoogle Scholar
  15. 15.
    Slifstein M, Kolachana B, Simpson EH, Tabares P, Cheng B, Duvall M et al (2008) COMT genotype predicts cortical-limbic D1 receptor availability measured with [11C]NNC112 and PET. Mol Psychiatry 13:821–827CrossRefPubMedGoogle Scholar
  16. 16.
    Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98:6917–6922CrossRefPubMedGoogle Scholar
  17. 17.
    Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS et al (2003) Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 60:889–896CrossRefPubMedGoogle Scholar
  18. 18.
    Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF et al (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 100:6186–6191CrossRefPubMedGoogle Scholar
  19. 19.
    Kessler RM, Whetsell WO, Ansari MS, Votaw JR, de Paulis T, Clanton JA et al (1993) Identification of extrastriatal dopamine D2 receptors in post mortem human brain with [125I]epidepride. Brain Res 609:237–243CrossRefPubMedGoogle Scholar
  20. 20.
    Hall H, Farde L, Halldin C, Hurd YL, Pauli S, Sedvall G (1996) Autoradiographic localization of extrastriatal D2-dopamine receptors in the human brain using [125I]epidepride. Synapse 23:115–123CrossRefPubMedGoogle Scholar
  21. 21.
    Lumme V, Aalto S, Ilonen T, Nagren K, Hietala J (2007) Dopamine D2/D3 receptor binding in the anterior cingulate cortex and executive functioning. Psychiatry Res 156:69–74CrossRefPubMedGoogle Scholar
  22. 22.
    Craddock N, Owen MJ, O'Donovan MC (2006) The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons. Mol Psychiatry 11:446–458CrossRefPubMedGoogle Scholar
  23. 23.
    Monakhov M, Golimbet V, Abramova L, Kaleda V, Karpov V (2008) Association study of three polymorphisms in the dopamine D2 receptor gene and schizophrenia in the Russian population. Schizophr Res 100:302–307CrossRefPubMedGoogle Scholar
  24. 24.
    Huuhka K, Anttila S, Huuhka M, Hietala J, Huhtala H, Mononen N et al (2008) Dopamine 2 receptor C957T and catechol-o-methyltransferase Val158Met polymorphisms are associated with treatment response in electroconvulsive therapy. Neurosci Lett 448:79–83CrossRefPubMedGoogle Scholar
  25. 25.
    Farde L, Suhara T, Nyberg S, Karlsson P, Nakashima Y, Hietala J et al (1997) A PET-study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacology (Berl) 133:396–404CrossRefGoogle Scholar
  26. 26.
    Sudo Y, Suhara T, Inoue M, Ito H, Suzuki K, Saijo T et al (2001) Reproducibility of [11 C]FLB 457 binding in extrastriatal regions. Nucl Med Commun 22:1215–1221CrossRefPubMedGoogle Scholar
  27. 27.
    Vilkman H, Kajander J, Nagren K, Oikonen V, Syvalahti E, Hietala J (2000) Measurement of extrastriatal D2-like receptor binding with [11C]FLB 457—a test–retest analysis. Eur J Nucl Med 27:1666–1673CrossRefPubMedGoogle Scholar
  28. 28.
    Pohjalainen T, Rinne JO, Nagren K, Lehikoinen P, Anttila K, Syvalahti EK et al (1998) The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry 3:256–260CrossRefPubMedGoogle Scholar
  29. 29.
    Hirvonen M, Laakso A, Nagren K, Rinne JO, Pohjalainen T, Hietala J (2004) C957T polymorphism of the dopamine D2 receptor (DRD2) gene affects striatal DRD2 availability in vivo. Mol Psychiatry 9:1060–1061. Corrigendum in: Mol Psychiatry 2005;10:889CrossRefPubMedGoogle Scholar
  30. 30.
    Hirvonen MM, Laakso A, Någren K, Rinne JO, Pohjalainen T, Hietala J (2009) C957T polymorphism of dopamine D2 receptor (DRD2) gene affects striatal DRD2 in vivo availability by changing the receptor affinity. Synapse 63:907–912CrossRefPubMedGoogle Scholar
  31. 31.
    Hirvonen MM, Lumme V, Hirvonen J, Pesonen U, Nagren K, Vahlberg T et al (2009) C957T polymorphism of the human dopamine D2 receptor gene predicts extrastriatal dopamine receptor availability in vivo. Prog Neuropsychopharmacol Biol Psychiatry 33:630–636CrossRefPubMedGoogle Scholar
  32. 32.
    Hietala J, Syvalahti E, Vuorio K, Nagren K, Lehikoinen P, Ruotsalainen U et al (1994) Striatal D2 dopamine receptor characteristics in neuroleptic-naive schizophrenic patients studied with positron emission tomography. Arch Gen Psychiatry 51:116–123PubMedGoogle Scholar
  33. 33.
    Hietala J, West C, Syvalahti E, Nagren K, Lehikoinen P, Sonninen P et al (1994) Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacology (Berl) 116:285–290CrossRefGoogle Scholar
  34. 34.
    Hietala J, Nagren K, Lehikoinen P, Ruotsalainen U, Syvalahti E (1999) Measurement of striatal D2 dopamine receptor density and affinity with [11C]-raclopride in vivo: a test-retest analysis. J Cereb Blood Flow Metab 19:210–217CrossRefPubMedGoogle Scholar
  35. 35.
    Slifstein M, Laruelle M (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol 28:595–608CrossRefPubMedGoogle Scholar
  36. 36.
    Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158CrossRefPubMedGoogle Scholar
  37. 37.
    Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539CrossRefPubMedGoogle Scholar
  38. 38.
    Woo JM, Yoon KS, Yu BH (2002) Catechol O-methyltransferase genetic polymorphism in panic disorder. Am J Psychiatry 159:1785–1787CrossRefPubMedGoogle Scholar
  39. 39.
    Kaasinen V, Vilkman H, Hietala J, Nagren K, Helenius H, Olsson H et al (2000) Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiol Aging 21:683–688CrossRefPubMedGoogle Scholar
  40. 40.
    Pohjalainen T, Rinne JO, Nagren K, Syvalahti E, Hietala J (1998) Sex differences in the striatal dopamine D2 receptor binding characteristics in vivo. Am J Psychiatry 155:768–773PubMedGoogle Scholar
  41. 41.
    Syvanen AC, Tilgmann C, Rinne J, Ulmanen I (1997) Genetic polymorphism of catechol-O-methyltransferase (COMT): correlation of genotype with individual variation of S-COMT activity and comparison of the allele frequencies in the normal population and parkinsonian patients in Finland. Pharmacogenetics 7:65–71CrossRefPubMedGoogle Scholar
  42. 42.
    Tunbridge EM, Bannerman DM, Sharp T, Harrison PJ (2004) Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J Neurosci 24:5331–5335CrossRefPubMedGoogle Scholar
  43. 43.
    Slifstein M, Kegeles LS, Gonzales R, Frankle WG, Xu X, Laruelle M et al (2007) [11C]NNC 112 selectivity for dopamine D1 and serotonin 5-HT(2A) receptors: a PET study in healthy human subjects. J Cereb Blood Flow Metab 27:1733–1741CrossRefPubMedGoogle Scholar
  44. 44.
    Ekelund J, Slifstein M, Narendran R, Guillin O, Belani H, Guo NN et al (2007) In vivo DA D(1) receptor selectivity of NNC 112 and SCH 23390. Mol Imaging Biol 9:117–125CrossRefPubMedGoogle Scholar
  45. 45.
    Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451CrossRefPubMedGoogle Scholar
  46. 46.
    Olsson H, Halldin C, Farde L (2004) Differentiation of extrastriatal dopamine D2 receptor density and affinity in the human brain using PET. Neuroimage 22:794–803CrossRefPubMedGoogle Scholar
  47. 47.
    Montgomery AJ, Asselin MC, Farde L, Grasby PM (2007) Measurement of methylphenidate-induced change in extrastriatal dopamine concentration using [11C]FLB 457 PET. J Cereb Blood Flow Metab 27:369–377CrossRefPubMedGoogle Scholar
  48. 48.
    Aalto S, Hirvonen J, Kaasinen V, Hagelberg N, Kajander J, Nagren K et al (2009) The effects of d-amphetamine on extrastriatal dopamine D2/D3 receptors: a randomized, double-blind, placebo-controlled PET study with [11C]FLB 457 in healthy subjects. Eur J Nucl Med Mol Imaging 36:475–483CrossRefPubMedGoogle Scholar
  49. 49.
    Landwehrmeyer B, Mengod G, Palacios JM (1993) Dopamine D3 receptor mRNA and binding sites in human brain. Brain Res Mol Brain Res 18:187–192CrossRefPubMedGoogle Scholar
  50. 50.
    Meador-Woodruff JH, Damask SP, Wang J, Haroutunian V, Davis KL, Watson SJ (1996) Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacology 15:17–29CrossRefPubMedGoogle Scholar
  51. 51.
    Murray AM, Ryoo HL, Gurevich E, Joyce JN (1994) Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc Natl Acad Sci U S A 91:11271–11275CrossRefPubMedGoogle Scholar
  52. 52.
    Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, Sedvall G (1998) D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res 779:58–74CrossRefPubMedGoogle Scholar

Copyright information

© Academy of Molecular Imaging 2009

Authors and Affiliations

  • Mika M. Hirvonen
    • 1
    • 2
  • Kjell Någren
    • 2
  • Juha O. Rinne
    • 2
  • Ullamari Pesonen
    • 1
  • Tero Vahlberg
    • 3
  • Nora Hagelberg
    • 2
    • 4
  • Jarmo Hietala
    • 2
    • 5
    Email author
  1. 1.Department of Pharmacology, Drug Development and TherapeuticsUniversity of TurkuTurkuFinland
  2. 2.Turku PET CentreTurku University HospitalTurkuFinland
  3. 3.Department of BiostatisticsUniversity of TurkuTurkuFinland
  4. 4.Department of AnaesthesiologyTurku University HospitalTurkuFinland
  5. 5.Department of PsychiatryUniversity of TurkuTurkuFinland

Personalised recommendations