Molecular Imaging and Biology

, 11:460 | Cite as

Imaging Correlates of Differential Expression of Indoleamine 2,3-Dioxygenase in Human Brain Tumors

  • Carlos E. A. Batista
  • Csaba Juhász
  • Otto Muzik
  • William J. Kupsky
  • Geoffrey Barger
  • Harry T. Chugani
  • Sandeep Mittal
  • Sandeep Sood
  • Pulak K. Chakraborty
  • Diane C. Chugani
Research Article

Abstract

Background

Tryptophan catabolism via the kynurenine pathway, mediated by indoleamine 2,3-dioxygenase (IDO), is a mechanism involved in tumor immunoresistance. Positron emission tomography (PET) with α-[11C]methyl-L-tryptophan (AMT) can quantify transport and metabolism of tryptophan in infiltrating gliomas and glioneuronal tumors. In the present study, we investigated whether increased tryptophan metabolism in brain tumors measured by PET is related to expression of IDO in resected brain tumor specimens.

Methods

IDO expression was assessed by immunohistochemistry in tumor specimens from 15 patients (median age, 34 years) with primary brain tumors who underwent AMT PET scanning before tumor resection. Patterns of IDO expression were compared between low- and high-grade tumors and also to AMT transport and metabolism measured on PET.

Results

IDO immunoreactivity was seen in tumor cells in six of seven low-grade tumors but only in one of eight high-grade tumors (p = 0.01); three of these latter tumors showed endothelial staining only. Low-grade neoplasms showed lower transport rate (p < 0.01) but higher metabolic rate (p = 0.003) for AMT as compared to high-grade tumors. AMT metabolic rates were lower in tumor samples with no or minimal IDO expression as compared to those with widespread IDO staining (p = 0.017).

Conclusion

Low-grade tumors show widespread IDO expression, while IDO expression in high-grade brain tumors can be absent or largely confined to endothelial cells. AMT PET can be useful to identify brain tumors with different profiles of IDO expression, thus providing a useful imaging marker for emerging treatments targeting tumor IDO activity.

Key words

Glioma Positron emission tomography Tryptophan Indoleamine 2,3-Dioxygenase Immunohistochemistry 

Notes

Acknowledgement

The authors thank Galina Rabkin, CNMT, Angela Wigeluk, CNMT, and Mei-li Lee, MS, for their technical assistance in performing the PET studies. They also thank Ms. Barbara Pruetz from the Department of Pathology for her expert assistance in the immunohistochemistry studies. The study was supported by a grant from the National Cancer Institute (CA-12341, to C. Juhasz).

References

  1. 1.
    Aune TM, Pogue SL (1989) Inhibition of tumor cell growth by interferon-gamma is mediated by two distinct mechanisms dependent upon oxygen tension: induction of tryptophan degradation and depletion of intracellular nicotinamide adenine d inucleotide. J Clin Invest 84:863–875CrossRefPubMedGoogle Scholar
  2. 2.
    Beutelspacher SC, Tan PH, McClure MO, Larkin DF, Lechler RI, George AJ (2006) Expression of indoleamine 2,3-dioxygenase (IDO) by endothelial cells: implications for the control of alloresponses. Am J Transplant 6:1320–1330CrossRefPubMedGoogle Scholar
  3. 3.
    Burger PC, Scheithauer BW (eds) (1994) Atlas of tumor pathology: tumors of the central nervous system, 3rd series. Armed Forces Institute of Pathology, Bethesda, MDGoogle Scholar
  4. 4.
    Burger PC, Scheithauer BW, Vogel FS (eds) (2002) Surgical pathology of the nervous system and its coverings, PC 4th edn. New York: Churchill-LivingstoneGoogle Scholar
  5. 5.
    Burke F, Knowles RG, East N, Balkwill FR (1995) The role of indoleamine 2,3-dioxygenase in the anti-tumour activity of human interferon-gamma in vivo. Int J Cancer 60:115–122CrossRefPubMedGoogle Scholar
  6. 6.
    Chugani DC, Muzik O, Chakraborty P, Mangner T, Chugani HT (1998) Human brain serotonin synthesis capacity measured in vivo with alpha-[C-11]methyl-L-tryptophan. Synapse 28:33–43CrossRefPubMedGoogle Scholar
  7. 7.
    Chugani DC, Muzik O (2000) Alpha[C-11]methyl-L-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J Cereb Blood Flow Metab 20:2–9CrossRefPubMedGoogle Scholar
  8. 8.
    Diksic M, Nagahiro S, Sourkes TL, Yamamoto YL (1990) A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model. J Cereb Blood Flow Metab 10:1–12PubMedGoogle Scholar
  9. 9.
    Fenstermaker RA, Ciesielski MJ (2004) Immunotherapeutic strategies for malignant glioma. Cancer Control 11:181–191PubMedGoogle Scholar
  10. 10.
    Friberg M, Jennings R, Alsarraj M, Dessureault S, Cantor A, Extermann M, Mellor AL, Munn DH, Antonia SJ (2002) Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer 101:151–155CrossRefPubMedGoogle Scholar
  11. 11.
    Gjedde A (1981) High- and low-affinity transport of D-glucose from blood to brain. J Neurochem 36:1463–1471CrossRefPubMedGoogle Scholar
  12. 12.
    Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15–23CrossRefPubMedGoogle Scholar
  13. 13.
    Jensen RL, Caamano E, Jensen EM, Couldwell WT (2006) Development of contrast enhancement after long-term observation of a dysembryoplastic neuroepithelial tumor. J Neurooncol 78:59–62CrossRefPubMedGoogle Scholar
  14. 14.
    Jia L, Schweikart K, Tomaszewski J, Page JG, Noker PE, Buhrow SA, Reid JM, Ames MM, Munn DH (2008) Toxicology and pharmacokinetics of 1-methyl-d-tryptophan: absence of toxicity due to saturating absorption. Food Chem Toxicol 46:203–211CrossRefPubMedGoogle Scholar
  15. 15.
    Juhasz C, Chugani DC, Muzik O, Wu D, Sloan AE, Barger G, Watson C, Shah AK, Sood S, Ergun EL, Mangner TJ, Chakraborty PK, Kupsky WJ, Chugani HT (2006) In vivo uptake and metabolism of alpha-[11C]methyl-L-tryptophan in human brain tumors. J Cereb Blood Flow Metab 26:345–357CrossRefPubMedGoogle Scholar
  16. 16.
    Kai S, Goto S, Tahara K, Sasaki A, Kawano K, Kitano S (2003) Inhibition of indoleamine 2,3-dioxygenase suppresses NK cell activity and accelerates tumor growth. J Exp Ther Oncol 3:336–345CrossRefPubMedGoogle Scholar
  17. 17.
    Kai S, Goto S, Tahara K, Sasaki A, Tone S, Kitano S (2004) Indoleamine 2,3-dioxygenase is necessary for cytolytic activity of natural killer cells. Scand J Immunol 59:177–182CrossRefPubMedGoogle Scholar
  18. 18.
    King NJ, Thomas SR (2007) Molecules in focus: indoleamine 2,3-dioxygenase. Int J Biochem Cell Biol 39:2167–2172CrossRefGoogle Scholar
  19. 19.
    Kleihues P, Cavenee WK (eds) (2000) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer (IARC) Press, LyonGoogle Scholar
  20. 20.
    Kwidzinski E, Bunse J, Kovac AD, Ullrich O, Zipp F, Nitsch R, Bechmann I (2003) IDO (indolamine 2,3-dioxygenase) expression and function in the CNS. Adv Exp Med Biol 527:113–118PubMedGoogle Scholar
  21. 21.
    Kwidzinski E, Bechmann I (2007) IDO expression in the brain: a double-edged sword. J Mol Med 85:1351–1359CrossRefPubMedGoogle Scholar
  22. 22.
    Löb S, Königsrainer A (2008) Is IDO a key enzyme bridging the gap between tumor escape and tolerance induction? Langenbecks Arch Surg 393:995–1003CrossRefPubMedGoogle Scholar
  23. 23.
    Löb S, Königsrainer A, Zieker D, Brücher BL, Rammensee HG, Opelz G, Terness P (2009) IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother 58:153–157CrossRefPubMedGoogle Scholar
  24. 24.
    Madras BK, Sourkes TL (1965) Metabolism of alpha-methyltryptophan. Biochem Pharmacol 14:1499–1506CrossRefPubMedGoogle Scholar
  25. 25.
    Mellor AL, Munn DH (1999) Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today 20:469–473CrossRefPubMedGoogle Scholar
  26. 26.
    Merchant RE, McVicar DW, Merchant LH, Young HF (1992) Treatment of recurrent malignant glioma by repeated intracerebral injections of human recombinant interleukin-2 alone or in combination with systemic interferon-alpha. Results of a phase I clinical trial. J Neurooncol 12:75–83CrossRefPubMedGoogle Scholar
  27. 27.
    Munn DH, Mellor AL (2004) IDO and tolerance to tumors. Trends Mol Med 10:15–8CrossRefPubMedGoogle Scholar
  28. 28.
    Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117:1147–54CrossRefPubMedGoogle Scholar
  29. 29.
    Muzik O, Behrendt DB, Mangner TJ, Chugani HT (1994) Design of a pediatric protocol for quantitative brain FDG studies with PET not requiring invasive blood sampling. J Nucl Med 35:104Google Scholar
  30. 30.
    Muzik O, Chugani DC, Chakraborty P, Mangner T, Chugani HT (1997) Analysis of [C-11]alpha-methyl-tryptophan kinetics for the estimation of serotonin synthesis rate in vivo. J Cereb Blood Flow Metab 17:659–669CrossRefPubMedGoogle Scholar
  31. 31.
    Ozaki Y, Edelstein MP, Duch DS (1988) Induction of indoleamine 2,3-dioxygenase: a mechanism of the antitumor activity of interferon gamma. Proc Natl Acad Sci USA 85:1242–1246CrossRefPubMedGoogle Scholar
  32. 32.
    Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7PubMedGoogle Scholar
  33. 33.
    Quinones-Hinojosa A, Sanai N, Smith JS, McDermott MW (2005) Techniques to assess the proliferative potential of brain tumors. J Neurooncol 74:19–30CrossRefPubMedGoogle Scholar
  34. 34.
    Riesenberg R, Weiler C, Spring O, Eder M, Buchner A, Popp T, Castro M, Kammerer R, Takikawa O, Hatz RA, Stief CG, Hofstetter A, Zimmermann W (2007) Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin Cancer Res 13:6993–7002CrossRefPubMedGoogle Scholar
  35. 35.
    Schröcksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 364:82–90CrossRefPubMedGoogle Scholar
  36. 36.
    Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10CrossRefPubMedGoogle Scholar
  37. 37.
    Stojic J, Hagemann C, Haas S, Herbold C, Kühnel S, Gerngras S, Roggendorf W, Roosen K, Vince GH (2008) Expression of matrix metalloproteinases MMP-1, MMP-11 and MMP-19 is correlated with the WHO-grading of human malignant gliomas. Neurosci Res 60:40–49CrossRefPubMedGoogle Scholar
  38. 38.
    Suhonen-Polvi H, Ruotsalainen U, Kinnala A, Bergman J, Haaparanta M, Teras M, Makela P, Solin O, Wegelius U (1995) FDG-PET in early infancy: simplified quantification methods to measure cerebral glucose utilization. J Nucl Med 36:1249–1254PubMedGoogle Scholar
  39. 39.
    Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5:2516–2522PubMedGoogle Scholar
  40. 40.
    Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van Den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274CrossRefPubMedGoogle Scholar
  41. 41.
    Vezzani A, Gramsbergen JB, Versari P, Stasi MA, Procaccio F, Schwarcz R (1990) Kynurenic acid synthesis by human glioma. J Neurol Sci 99:51–57CrossRefPubMedGoogle Scholar
  42. 42.
    Wolff JE, Wagner S, Reinert C, Gnekow A, Kortmann RD, Kühl J, Van Gool SW (2006) Maintenance treatment with interferon-gamma and low-dose cyclophosphamide for pediatric high-grade glioma. J Neurooncol 79:315–321CrossRefPubMedGoogle Scholar

Copyright information

© Academy of Molecular Imaging 2009

Authors and Affiliations

  • Carlos E. A. Batista
    • 1
    • 7
  • Csaba Juhász
    • 1
    • 2
    • 6
    • 7
  • Otto Muzik
    • 1
    • 3
    • 7
  • William J. Kupsky
    • 4
  • Geoffrey Barger
    • 2
    • 6
  • Harry T. Chugani
    • 1
    • 2
    • 3
    • 7
  • Sandeep Mittal
    • 5
    • 6
  • Sandeep Sood
    • 1
    • 5
  • Pulak K. Chakraborty
    • 7
  • Diane C. Chugani
    • 1
    • 3
    • 7
  1. 1.Carman and Ann Adams Department of Pediatrics, School of MedicineWayne State UniversityDetroitUSA
  2. 2.Department of Neurology, School of MedicineWayne State UniversityDetroitUSA
  3. 3.Department of Radiology, School of MedicineWayne State UniversityDetroitUSA
  4. 4.Department of Pathology, School of MedicineWayne State UniversityDetroitUSA
  5. 5.Department of Neurosurgery, School of MedicineWayne State UniversityDetroitUSA
  6. 6.Karmanos Cancer Institute, School of MedicineWayne State UniversityDetroitUSA
  7. 7.PET CenterChildren’s Hospital of MichiganDetroitUSA

Personalised recommendations