Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Molecular Imaging Paradigm to Rapidly Profile Response to Angiogenesis-directed Therapy in Small Animals



The development of novel angiogenesis-directed therapeutics is hampered by the lack of non-invasive imaging metrics capable of assessing treatment response. We report the development and validation of a novel molecular imaging paradigm to rapidly assess response to angiogenesis-directed therapeutics in preclinical animal models.


A monoclonal antibody-based optical imaging probe targeting vascular endothelial growth factor receptor-2 (VEGFR2) expression was synthesized and evaluated in vitro and in vivo via multispectral fluorescence imaging.


The optical imaging agent demonstrated specificity for the target receptor in cultured endothelial cells and in vivo. The agent exhibited significant accumulation within 4T1 xenograft tumors. Mice bearing 4T1 xenografts and treated with sunitinib exhibited both tumor growth arrest and decreased accumulation of NIR800-αVEGFR2ab compared to untreated cohorts (p = 0.0021).


Molecular imaging of VEGFR2 expression is a promising non-invasive biomarker for assessing angiogenesis and evaluating the efficacy of angiogenesis-directed therapies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med (USA) 1:27–31

  2. 2.

    Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature (USA) 339:58–61

  3. 3.

    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med (USA) 285:1182–1186

  4. 4.

    Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun (USA) 161:851–858

  5. 5.

    Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med (USA) 133:275–288

  6. 6.

    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science (USA) 246:1306–1309

  7. 7.

    Ciardiello F, Bianco R, Caputo R et al (2004) Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy. Clin Cancer Res (USA) 10:784–793

  8. 8.

    Prewett M, Huber J, Li Y et al (1999) Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res (USA) 59:5209–5218

  9. 9.

    Watanabe H, Mamelak AJ, Weiss E et al (2005) Anti-vascular endothelial growth factor receptor-2 antibody accelerates renal disease in the NZB/W F1 murine systemic lupus erythematosus model. Clin Cancer Res (USA) 11:407–409

  10. 10.

    Wedge SR, Ogilvie DJ, Dukes M et al (2000) ZD4190: an orally active inhibitor of vascular endothelial growth factor signaling with broad-spectrum antitumor efficacy. Cancer Res (USA) 60:970–975

  11. 11.

    Wood JM, Bold G, Buchdunger E et al (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res (USA) 60:2178–2189

  12. 12.

    Vaisman N, Gospodarowicz D, Neufeld G (1990) Characterization of the receptors for vascular endothelial growth factor. J Biol Chem (USA) 265:19461–19466

  13. 13.

    Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH (2005) Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst (USA) 97:172–187

  14. 14.

    Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev (USA) 17:545–580

  15. 15.

    Blankenberg FG, Backer MV, Levashova Z, Patel V, Backer JM (2006) In vivo tumor angiogenesis imaging with site-specific labeled (99m)Tc-HYNIC-VEGF. Eur J Nucl Med Mol Imaging (USA) 33:841–848

  16. 16.

    Blankenberg FG, Mandl S, Cao YA et al (2004) Tumor imaging using a standardized radiolabeled adapter protein docked to vascular endothelial growth factor. J Nucl Med (USA) 45:1373–1380

  17. 17.

    Cai W, Chen K, Mohamedali KA et al (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med (USA) 47:2048–2056

  18. 18.

    Chan C, Sandhu J, Guha A et al (2005) A human transferrin-vascular endothelial growth factor (hnTf-VEGF) fusion protein containing an integrated binding site for (111)In for imaging tumor angiogenesis. J Nucl Med (USA) 46:1745–1752

  19. 19.

    Collingridge DR, Carroll VA, Glaser M et al (2002) The development of [(124)I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res (USA) 62:5912–20059

  20. 20.

    Cornelissen B, Oltenfreiter R, Kersemans V et al (2005) In vitro and in vivo evaluation of [123I]-VEGF165 as a potential tumor marker. Nucl Med Biol (USA) 32:431–436

  21. 21.

    Li S, Peck-Radosavljevic M, Kienast O et al (2004) Iodine-123-vascular endothelial growth factor-165 (123I-VEGF165). Biodistribution, safety and radiation dosimetry in patients with pancreatic carcinoma. Q J Nucl Med Mol Imaging (USA) 48:198–206

  22. 22.

    Lu E, Wagner WR, Schellenberger U et al (2003) Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation (USA) 108:97–103

  23. 23.

    Yoshimoto M, Kinuya S, Kawashima A et al (2006) Radioiodinated VEGF to image tumor angiogenesis in a LS180 tumor xenograft model. Nucl Med Biol (USA) 33:963–969

  24. 24.

    Backer MV, Levashova Z, Patel V et al (2007) Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med (USA) 13:504–509

  25. 25.

    Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev (USA) 25:581–611

  26. 26.

    Kanno S, Oda N, Abe M et al (2000) Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene (USA) 19:2138–2146

  27. 27.

    Watanabe Y, Endo K, Koizumi M et al (1988) Semiquantitative in vitro binding assay of indium-111-labeled monoclonal antibodies to human cancer and normal tissues. J Nucl Med (USA) 29:1436–1442

  28. 28.

    Mendel DB, Laird AD, Xin X et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res (USA) 9:327–337

  29. 29.

    Vokes SA, Yatskievych TA, Heimark RL et al (2004) Hedgehog signaling is essential for endothelial tube formation during vasculogenesis. Development (Cambridge, England) (USA) 131:4371–4380

  30. 30.

    Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging (USA) 7:91–101

  31. 31.

    Ferrara KW, Merritt CR, Burns PN et al (2000) Evaluation of tumor angiogenesis with US: imaging, Doppler, and contrast agents. Acad Radiol (USA) 7:824–839

  32. 32.

    Numaguchi Y, Kishikawa T, Fukui M et al (1979) Prolonged injection angiography for diagnosing intracranial cavernous hemangiomas. Radiology (USA) 131:137–138

  33. 33.

    Ntziachristos V, Yodh AG, Schnall M, Chance B (2000) Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A (USA) 97:2767–2772

  34. 34.

    Drevs J, Hofmann I, Hugenschmidt H et al (2000) Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res (USA) 60:4819–4824

  35. 35.

    Marzola P, Degrassi A, Calderan L et al (2005) Early antiangiogenic activity of SU11248 evaluated in vivo by dynamic contrast-enhanced magnetic resonance imaging in an experimental model of colon carcinoma. Clin Cancer Res (USA) 11:5827–5832

  36. 36.

    Forsberg F, Dicker AP, Thakur ML et al (2002) Comparing contrast-enhanced ultrasound to immunohistochemical markers of angiogenesis in a human melanoma xenograft model: preliminary results. Ultrasound Med Biol (USA) 28:445–451

  37. 37.

    Knopp MV, Weiss E, Sinn HP et al (1999) Pathophysiologic basis of contrast enhancement in breast tumors. J Magn Reson Imaging (USA) 10:260–266

  38. 38.

    Su MY, Cheung YC, Fruehauf JP et al (2003) Correlation of dynamic contrast enhancement MRI parameters with microvessel density and VEGF for assessment of angiogenesis in breast cancer. J Magn Reson Imaging (USA) 18:467–477

  39. 39.

    Ocak I, Baluk P, Barrett T, McDonald DM, Choyke P (2007) The biologic basis of in vivo angiogenesis imaging. Front Biosci (USA) 12:3601–3616

  40. 40.

    Miller KD, Burstein HJ, Elias AD et al (2005) Safety and efficacy of sunitinib malate (SU11248) as second-line therapy in metastatic breast cancer (MIBC) patients: preliminary results from a Phase II study. Ejc Supplements (USA) 3:113–114

  41. 41.

    Sasaki T, Kitadai Y, Nakamura T et al (2007) Inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation on tumor-associated endothelial cells leads to treatment of orthotopic human colon cancer in nude mice. Neoplasia (USA) 9:1066–1077

  42. 42.

    Han Z, Fu A, Wang H et al (2008) Noninvasive assessment of cancer response to therapy. Nat Med (USA) 14:343–349

Download references


The authors wish to acknowledge contributions from Zou Yue for assistance with tumor implantation and the Vanderbilt University Immunohistochemistry Core laboratory for IHC staining. The authors thank Frank Revetta for helpful discussions regarding the IHC. The authors acknowledge pilot funding (HCM) from the Vanderbilt Special Program of Research Excellence (SPORE) in Breast Cancer (P50 CA098131) and additional NIH research support from a post-doctoral training grant in imaging science (T32 EB003817, JCG) and the NCI-funded South-Eastern Center for small animal imaging (U24 CA 126588, JCG). HCM is supported by a Career Development Award from the NCI (K25 CA127349).

Author information

Correspondence to H. Charles Manning.

Electronic Supplementary Material

Below is the link to the electronic supplementary materials.

Supplementary Fig. 1

Tumor size and NIR800-αVEGFR2ab fluorescence (tumor relative to the contralateral hind limb) of animals treated with an imaging dose of NIR800-αVEGFR2ab 5 days prior (n = 9) and animals naïve to NIR800-αVEGFR2ab exposure (n = 10) (GIF 212 KB).

Supplementary Fig. 2

a Tumor size versus fluorescence intensity from NIR800-αVEGFR2ab accumulation in the tumor normalized to the contralateral hind limb for vehicle-treated animals. b Tumor size versus morphometric analysis of VEGFR2 expression after vehicle treatment (GIF 232 KB).

High resolution image (TIFF 67.2 KB)

High resolution image (TIFF 68.3 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Virostko, J., Xie, J., Hallahan, D.E. et al. A Molecular Imaging Paradigm to Rapidly Profile Response to Angiogenesis-directed Therapy in Small Animals. Mol Imaging Biol 11, 204–212 (2009). https://doi.org/10.1007/s11307-008-0193-9

Download citation

Key words

  • Molecular imaging
  • Biomarker
  • VEGFR2
  • Sunitinib
  • Angiogenesis
  • Optical imaging
  • Multispectral fluorescence
  • Near-infrared fluorescence
  • Tyrosine kinase inhibitor
  • VEGF