Molecular Imaging and Biology

, 9:284

Voxel-based NK1 Receptor Occupancy Measurements with [18F]SPA-RQ and Positron Emission Tomography: A Procedure for Assessing Errors from Image Reconstruction and Physiological Modeling

  • Esa Wallius
  • Mikko Nyman
  • Vesa Oikonen
  • Jarmo Hietala
  • Ulla Ruotsalainen
Research Article



Receptor occupancy studies with positron emission tomography (PET) are widely used as aids in the drug development process. This study introduces a general procedure for assessing errors that arise from the applied image processing methods in PET receptor occupancy studies using the neurokinin-1 (NK1) receptor occupancy study as an example.


The bias and variance among eight combinations of image reconstruction and model calculation methods for estimating voxel-level receptor occupancy results were examined. The tests were performed using a dynamic numerical phantom based on a previous PET drug occupancy study with the NK1 receptor antagonist tracer [18F]SPA-RQ.


The simplified reference tissue model with basis functions (SRTM BF) was best at estimating receptor occupancy in terms of average bias. On the other hand, median root prior (MRP) image reconstruction produced the lowest variances in the occupancy estimates. These results suggest that SRTM BF and MRP is, in this case, the combination of choice in voxel-based receptor occupancy calculation. In the calculation of regional binding potential values, the commonly used sample mean is not applicable and, e.g., the median could be used instead.


This study shows that even this kind of complicated receptor study can be statistically evaluated. The reconstruction methods had an effect on the variance in the voxel-based receptor occupancy calculation. The model calculation methods influenced the average bias. The test method was found useful in assessing the methodological sources of systematic and random error in receptor occupancy estimation with PET.

Key words

Bias Variance Root mean squared error Receptor occupancy PET 


  1. 1.
    Passchier J, Gee A, Willemsen A, et al. (2002) Measuring drug related receptor occupancy with positron emission tomography. Methods 27:278–286PubMedCrossRefGoogle Scholar
  2. 2.
    Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451PubMedCrossRefGoogle Scholar
  3. 3.
    Bergström M, Hargreaves RJ, Burns HD, et al. (2004) Human positron emission tomography studies of brain neurokinin 1 receptor occupancy by aprepipant. Biol Psychiatry 55:1007–1012PubMedCrossRefGoogle Scholar
  4. 4.
    Carson RE (1991) Precision and accuracy considerations of physiological quantitation in PET. J Cereb Blood Flow Metab 11:A45–A50PubMedGoogle Scholar
  5. 5.
    Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158PubMedCrossRefGoogle Scholar
  6. 6.
    Gunn RN, Lammertsma AA, Hume SP, et al. (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6:279–287PubMedCrossRefGoogle Scholar
  7. 7.
    Logan J (2000) Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 27:661–670PubMedCrossRefGoogle Scholar
  8. 8.
    Slifstein M, Laruelle M (2000) Effects of statistical noise on graphic analysis of PET neuroreceptor studies. J Nucl Med 41:2083–2088PubMedGoogle Scholar
  9. 9.
    Takeda Y, Chou KB, Takeda J, et al. (1991) Molecular cloning, structural characterization and functional expression of the human substance P receptor. Biochem Biophys Res Commun 179:1232–1240PubMedCrossRefGoogle Scholar
  10. 10.
    Hietala J, Nyman MJ, Eskola O, et al. (2005) Visualization and quantification of Neurokinin-1 (NK1) receptors in the human brain. Mol Imaging Biol 7:262–272PubMedCrossRefGoogle Scholar
  11. 11.
    Keller M, Montgomery S, Ball W, et al. (2006) Lack of efficacy of the substance P (Neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry 59:216–223PubMedCrossRefGoogle Scholar
  12. 12.
    Slifstein M, Laruelle M (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol 28:595–608PubMedCrossRefGoogle Scholar
  13. 13.
    Caberlotto L, Hurd YL, Murdock P, et al. (2003) Neurokinin 1 receptor and relative abundance of the short and long isoforms in the human brain. Eur J Neurosci 17:1736–1746PubMedCrossRefGoogle Scholar
  14. 14.
    De Felipe C, Herrero JF, O’Brien JA, et al. (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394–397PubMedCrossRefGoogle Scholar
  15. 15.
    Murtra P, Sheasby AM, Hunt SP, et al. (2000) Rewarding effects of opiates are absent in mice lacking the receptor for substance P. Nature 405:180–183PubMedCrossRefGoogle Scholar
  16. 16.
    Laird JM, Olivar T, Roza C, et al. (2000) Deficits in visceral pain and hyperalgesia of mice with a disruption of the tachykinin NK1 receptor gene. Neuroscience 98:345–352PubMedCrossRefGoogle Scholar
  17. 17.
    Rupniak NM, Carlson EC, Harrison T, et al. (2000) Pharmacological blockade or genetic deletion of substance P (NK(1)) receptors attenuates neonatal vocalisation in guinea-pigs and mice. Neuropharmacology 39:1413–1421PubMedCrossRefGoogle Scholar
  18. 18.
    Morcuende S, Harris EA, Sheasby A, et al. (2002) Adult neurogenesis is increased in the hippocampus of NK1 receptor knock-out mice. In: Abstracts in the 32nd SFN Annual Meeting, Orlando, 2–7 November 2002Google Scholar
  19. 19.
    Van der Hart MG, Czeh B, De Biurrun G, et al. (2002) Substance P receptor antagonist and clomipramine prevent stress-induced alterations in cerebral metabolites, cytogenesis in the dentate gyrus and hippocampal volume. Mol Psychiatry 7:933–941PubMedCrossRefGoogle Scholar
  20. 20.
    Chawla SP, Grunberg SM, Gralla RJ, et al. (2003) Establishing the dose of the oral NK1 antagonist aprepitant for the prevention of chemotherapy-induced nausea and vomiting. Cancer 87:2290–2300CrossRefGoogle Scholar
  21. 21.
    Solin O, Eskola O, Hamill TG, et al. (2004) Synthesis and characterization of a potent, selective, radiolabeled substance-P antagonist for NK1 receptor quantitation: ([18F]SPA-RQ). Mol Imaging Biol 6:373–384PubMedCrossRefGoogle Scholar
  22. 22.
    Hargreaves R (2002) Imaging substance P receptors (NK1) in the living human brain using positron emission tomography. J Clin Psychiatry 63(Suppl 11):18–24PubMedGoogle Scholar
  23. 23.
    Nyman MJ, Eskola O, Kajander J, et al. (2007) Gender and age affect NK1 receptors in the human brain—a positron emission tomography study with [18F]SPA-RQ. Int J Neuropsychopharmacol 10:219–229Google Scholar
  24. 24.
    Chin FT, Morse CL, Shetty HU, et al. (2006) Automated radiosynthesis of [18F]SPA-RQ for imaging human brain NK1 receptors with PET. J Label Compd Radiopharm 49:17–31CrossRefGoogle Scholar
  25. 25.
    Kramer MS, Winokur A, Kelsey J, et al. (2004) Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology 29:385–392PubMedCrossRefGoogle Scholar
  26. 26.
    Varga J, Szabo Z (2002) Modified regression model for the Logan plot. J Cereb Blood Flow Metab 22:240–244PubMedCrossRefGoogle Scholar
  27. 27.
    Wu Y, Carson RE (2002) Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab 22:1440–1452PubMedCrossRefGoogle Scholar
  28. 28.
    Alenius S, Ruotsalainen U (2002) Generalization of median root prior reconstruction. IEEE Trans Med Imaging 21:1413–1420PubMedCrossRefGoogle Scholar
  29. 29.
    Logan J, Fowler JS, Volkow ND, et al. (1990) Graphical analysis of reversible radioligand binding from time–activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747PubMedGoogle Scholar
  30. 30.
    Logan J, Fowler JS, Volkow ND, et al. (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840PubMedCrossRefGoogle Scholar
  31. 31.
    Jain A (1989) Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice-Hall InternationalGoogle Scholar
  32. 32.
    Qi J, Leahy RM, Hsu C, et al. (1998) Fully 3-D Bayesian image reconstruction for the ECAT EXACT HR+. IEEE Trans Nucl Sci 45:1096–1103CrossRefGoogle Scholar
  33. 33.
    Yavuz M, Fessler JA (1998) Statistical image reconstruction methods for randoms—precorrected PET scans. Med Image Anal 2:369–378PubMedCrossRefGoogle Scholar
  34. 34.
    Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609CrossRefPubMedGoogle Scholar
  35. 35.
    Alenius S, Ruotsalainen U (1997) Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med 24:258–265PubMedGoogle Scholar
  36. 36.
    Zubal IG, Harrell CR, Smith EO, et al. (1994) Computerized three-dimensional segmented human anatomy. Med Phys 21:299–302PubMedCrossRefGoogle Scholar
  37. 37.
    Rowe RW, Dai S (1992) A pseudo-Poisson model for simulation of positron emission tomographic projection data. Med Phys 19:1113–1119PubMedCrossRefGoogle Scholar
  38. 38.
    Yavuz M, Fessler JA (1997) New statistical models for randoms-precorrected PET scans. In: Duncan J, Gindi G (eds) Information processing in medical imaging, lecture notes in computer science, vol 1230. Berlin Heidelberg New York: Springer, pp 190–203Google Scholar
  39. 39.
    Furuie SS, Herman GT, Narayan TK, et al. (1994) A methodology for testing statistically significant differences between fully 3D PET reconstruction algorithms. Phys Med Biol 39:341–354PubMedCrossRefGoogle Scholar
  40. 40.
    Reilhac A, Lartizien C, Costes N, et al. (2004) PET-SORTEO: a Monte-Carlo based simulator with high count rate capabilities. IEEE Trans Nucl Sci 51:46–52CrossRefGoogle Scholar
  41. 41.
    Tohka J, Kivimäki A, Reilhac A, et al. (2004) Assessment of brain surface extraction from PET images using Monte Carlo simulations. IEEE Trans Nucl Sci 51:2641–2648CrossRefGoogle Scholar
  42. 42.
    Sederholm K (2004) Study on basis function methods reliance on θ3 parameter limits. Turku PET centre modelling report. Cited 26 August 2006.
  43. 43.
    Sederholm K (2004) Study on basis function methods reliance on θ3 parameter limits—phantom study. Turku PET centre modelling report. Cited 26 August 2006.
  44. 44.
    Bélanger MJ, Mann JJ, Parsey RV (2004) OS-EM and FBP reconstructions at low count rates: effect of 3D PET studies of [11C] WAY-100635. Neuroimage 21:244–250PubMedCrossRefGoogle Scholar
  45. 45.
    Sederholm K, Oikonen V, Hietala J (2004) Generation of parametric receptor binding potential images—comparing performance of basis function method, multilinear method and graphical analysis. Eur J Nucl Med Mol Imaging 31(Suppl 2):s407 (Abstract)Google Scholar
  46. 46.
    Liptrot M, Adams KH, Martiny L, et al. (2004) Cluster analysis in kinetic modeling of the brain: a noninvasive alternative to arterial sampling. Neuroimage 21:483–493PubMedCrossRefGoogle Scholar
  47. 47.
    Tohka J, Wallius E, Hirvonen J, et al. (2006) Automatic extraction of caudate and putamen in [11C]raclopride PET using deformable surface models and normalized cuts. IEEE Trans Nucl Sci 53:220–227CrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging 2007

Authors and Affiliations

  • Esa Wallius
    • 1
    • 2
  • Mikko Nyman
    • 2
  • Vesa Oikonen
    • 2
  • Jarmo Hietala
    • 3
  • Ulla Ruotsalainen
    • 1
  1. 1.Institute of Signal ProcessingTampere University of TechnologyTampereFinland
  2. 2.Turku PET CentreUniversity of TurkuTurkuFinland
  3. 3.Department of PsychiatryUniversity of TurkuTurkuFinland

Personalised recommendations