Advertisement

Molecular Imaging and Biology

, Volume 9, Issue 1, pp 6–16 | Cite as

High-Yield, Automated Radiosynthesis of 2-(1-{6-[(2-[18F]Fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([18F]FDDNP) Ready for Animal or Human Administration

  • Jie Liu
  • Vladimir Kepe
  • Alenka Žabjek
  • Andrej Petrič
  • Henry C. Padgett
  • Nagichettiar Satyamurthy
  • Jorge R. BarrioEmail author
Research Article

Abstract

The biomarker 2-(1-{6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([18F]FDDNP) is used as a positron emission tomography (PET) imaging probe for Alzheimer’s disease and other neurodegenerative diseases. A high-yield and fully automated synthesis of [18F]FDDNP—along with the synthesis and characterization of non-radioactive FDDNP, a fluorescent probe derived from 2-(1,1-dicyanopropenyl-2)-6-dimethylaminonaphthalene (DDNP)—are reported. Radiofluorination of the tosyloxy precursor 2-{[6-(2,2-dicyano-1-methylvinyl)-2-naphthyl](methyl)amino}ethyl-4-methylbenzenesulfonate (DDNPTs) with K18F/Kryptofix 2.2.2. yielded chemically (>99%) and radiochemically (>99%) pure [18F]FDDNP in high radiochemical yields (40–60%; n> 120), with specific activities ranging from 4 to 8 Ci/μmol at the end of synthesis (90 minutes). Both remote, semiautomated and automated synthesis procedures are described. Either approach provides a reliable method for production of large quantities (110–170 mCi from 500 mCi of [18F]fluoride) of [18F]FDDNP allowing for multiple PET experiments in the same day or for distribution of the tracer from a single cyclotron facility to PET imaging centers at various geographical distances.

Key words

[F-18]FDDNP Beta-Amyloid fibrils Senile plaques (SPs) Neurofibrillary tangles (NFTs) Alzheimer’s disease (AD) PET 

Notes

Acknowledgments

The authors would like to thank the staff at the UCLA Biomedical Cyclotron for the help provided during the optimization of the [18F]FDDNP radiosynthesis. This work was supported by Department of Energy grant DE-FC03-02ER-ER63420.

References

  1. 1.
    Evans DA (1990) Estimated prevalence of Alzheimer’s disease in the United States. Milbank Q 68:267–289PubMedCrossRefGoogle Scholar
  2. 2.
    Salmon DP, Lange KL (2001) Cognitive screening and neuropsychological assessment in early Alzheimer’s disease. Clin Geriatr Med 17:229–254PubMedCrossRefGoogle Scholar
  3. 3.
    Vickers JC, Dickson TC, Adlard PA, et al. (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog Neurobiol 60:139–165PubMedCrossRefGoogle Scholar
  4. 4.
    Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedCrossRefGoogle Scholar
  5. 5.
    Hof PR (1997) Morphology and neurochemical characteristics of the vulnerable neurons in brain aging and Alzheimer’s disease. Eur Neurol 37:71–81PubMedGoogle Scholar
  6. 6.
    Glenner GG, Eanes ED, Page, DL (1972) The relation of the properties of Congo red-stained amyloid fibrils to the β-conformation. J Histochem Cytochem 20:821–826PubMedGoogle Scholar
  7. 7.
    Jacobson A, Petrič A, Hogenkamp D, et al. (1996) 1,1-Dicyano-2-(6-dimethylaminonaphthalen-2-yl)propene (DDNP): a solvent polarity and viscosity sensitive fluorophore for fluorescence microscopy. J Am Chem Soc 118:5572–5579CrossRefGoogle Scholar
  8. 8.
    Agdeppa ED, Kepe V, Liu J, et al. (2001) Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer’s disease. J Neurosci 21:RC189 (1–5)Google Scholar
  9. 9.
    Barrio JR, Huang S-C, Cole G, et al. (1999) PET imaging of tangles and plaques in Alzheimer disease with a highly hydrophobic probe. J Labelled Compd Radiopharm 42 (Suppl1):S194–S195Google Scholar
  10. 10.
    Agdeppa ED, Kepe V, Liu J, et al. (2003) 2-Dialkylamino-6-acylmalononitrile substituted naphthalenes (DDNP analogs): novel diagnostic and therapeutic tools in Alzheimer’s disease. Mol Imaging Biol 5:404–417PubMedCrossRefGoogle Scholar
  11. 11.
    Agdeppa ED, Kepe V, Petriè A, et al. (2003) In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-{6-[(2[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile. Neuroscience 117:723–730PubMedCrossRefGoogle Scholar
  12. 12.
    Shoghi-Jadid K, Small GW, Agdeppa ED, et al. (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10:24–35PubMedCrossRefGoogle Scholar
  13. 13.
    Kepe V, Barrio JR, Huang S-C, et al. (2006) Serotonin 1A receptors in the living brain of Alzheimer’s disease patients. Proc Natl Acad Sci USA 103:702–707PubMedCrossRefGoogle Scholar
  14. 14.
    Kepe V, Cole GM, Liu J, et al. (2005) [18F]FDDNP microPET imaging of β-amyloid deposits in the living brain of triple transgenic rat model of β-amyloid deposition. Mol Imaging Biol 7:105Google Scholar
  15. 15.
    Bresjanac M, Smid LM, Vovko TD, et al. (2003) Molecular-imaging probe 2-(1-{6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene) malononitrile labels prion plaques in vitro. J Neurosci 23:8029–8033PubMedGoogle Scholar
  16. 16.
    Kurihara A, Pardridge WM (2000) Aβ1–40 peptide radiopharmaceuticals for brain amyloid imaging: 111In chelation, conjugation to poly(ethylene glycol)-biotin linkers, and autoradiography with Alzheimer’s disease brain sections. Bioconjug Chem 11:380–386PubMedCrossRefGoogle Scholar
  17. 17.
    Harpstrite SE, Prior J, Piwnica-Worms D, et al. (2005) Peptide conjugates for imaging β-amyloid in the brain. J Labelled Compd Radiopharm 48:S228Google Scholar
  18. 18.
    Kung HF, Kung M-P, Zhuang ZP, et al. (2003) Iodinated tracers for imaging amyloid plaques in the brain. Mol Imaging Biol 5:418–426PubMedCrossRefGoogle Scholar
  19. 19.
    Cai L, Chin FT, Pike VW, et al. (2004) Synthesis and evaluation of two 18F-labeled 6-iodo-2-(4′-N,N-dimethylamino)phenylimidazo[1,2-a]pyridine derivatives as prospective radioligands for β-amyloid in Alzheimer’s disease. J Med Chem 47:2208–2218PubMedCrossRefGoogle Scholar
  20. 20.
    Suemoto T, N. Okamura N, Shiomitsu T, et al. (2004) In vivo labeling of amyloid with BF-108. Neurosci Res 48:65–74PubMedCrossRefGoogle Scholar
  21. 21.
    Okamura N, Suemoto T, Shimadzu H, et al. (2004) Styrylbenzoxazole derivatives for in vivo imaging of amyloid plaques in the brain. J Neurosci 24:2535–2541PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar P, Zheng W, McQuarrie SA, et al. (2005) 18F-FESB: synthesis and automated radiofluorination of a novel 18F-labeled PET tracer for β-amyloid plaques. J Labelled Compd Radiopharm 48:983–996CrossRefGoogle Scholar
  23. 23.
    Ono M, Yoshida N, Ishibashi K, et al. (2005) Radioiodinated flavones for in vivo imaging of β-amyloid plaques in the brain. J Med Chem 48:7253–7260PubMedCrossRefGoogle Scholar
  24. 24.
    Klunk WE, Engler H, Nordberg A, et al. (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319PubMedCrossRefGoogle Scholar
  25. 25.
    Verhoeff NP, Wilson AA, Takeshita S, et al. (2004) In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 12:584–595PubMedCrossRefGoogle Scholar
  26. 26.
    Petrič A, Špes T, Barrio JR (1998) Novel fluorescent reactive dyes as intermediates for the preparation of UV and Vis wavelength fluorescent probes. Monatsh Chem 129:777–786Google Scholar
  27. 27.
    Nebeling B, Padgett HC (2006) explora RN: a general purpose and fully automated nucleophilic [18F]fluorination system. Mol Imaging Biol 8:96Google Scholar
  28. 28.
    Satyamurthy N, Amarasekera B, Alvord CW, Barrio JR, Phelps ME (2002) Tantalum [18O]water target for the production of [18F]fluoride with high reactivity for the preparation of 2-deoxy-2-[18F]fluoro-d-glucose. Mol Imaging Biol 4:65–70PubMedCrossRefGoogle Scholar
  29. 29.
    Golubev AS, Schedel H, Radics G, et al. (2004) Hexafluoroacetone as a protecting and activating reagent: 5,5-difluoro- and trans-5-fluoropipecolic acids from glutamic acid. Tetrahedron Lett 45:1445–1447CrossRefGoogle Scholar
  30. 30.
    Patai S, Rappoport Z (1962) Nucleophilic attack on carbon–carbon double bonds. II. Cleavage of arylmethylenemalononitriles by water in 95% ethanol. J Chem Soc 383–391Google Scholar
  31. 31.
    Bernasconi CF, Howard KA, Kanavarioti A (1984) Nucleophilic addition to olefins. 11. Kinetics of the reversible hydrolysis of benzylidenemalononitrile in water. J Am Chem Soc 106:6827–6835CrossRefGoogle Scholar
  32. 32.
    Žabjek A, Petrič A (1999) A general method for the alkaline cleavage of enolisable ketones. Tetrahedron Lett 40:6077–6078CrossRefGoogle Scholar
  33. 33.
    Wellenfels K, Friedrich K, Rieser J, et al. (1976) The analogy between O and C(CN)2. Angew Chem Int Ed Engl 15:261–270CrossRefGoogle Scholar
  34. 34.
    Karlsen H, Songe PH, Sunsby LK, et al. (2001) Regiochemistry in alkylation, acylation and methoxycarbonylation of alkali salts from 2-substituted alkenylpropanedinitriles. J Chem Soc, Perkin Trans 1:497–507CrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging 2006

Authors and Affiliations

  • Jie Liu
    • 1
  • Vladimir Kepe
    • 1
  • Alenka Žabjek
    • 2
  • Andrej Petrič
    • 2
  • Henry C. Padgett
    • 3
  • Nagichettiar Satyamurthy
    • 1
  • Jorge R. Barrio
    • 1
    Email author
  1. 1.Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLAUniversity of California–Los AngelesLos AngelesUSA
  2. 2.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Siemens Biomarker SolutionsCulverUSA

Personalised recommendations