Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Comparative lipidomic analysis of inflammatory mediators in the aqueous humor and tear fluid of humans and rabbits

Abstract

Introduction

Ocular inflammation is a key pathogenic factor in most blindness-causing visual disorders. It can manifest in the aqueous humor (AH) and tear fluid (TF) as alterations in polyunsaturated fatty acids (PUFAs) and their metabolites, oxylipins, lipid mediators, which are biosynthesized via enzymatic pathways involving lipoxygenase, cyclooxygenase or cytochrome P450 monooxygenase and specifically regulate inflammation and resolution pathways.

Objectives

This study aimed to establish the baseline patterns of PUFAs and oxylipins in AH and TF by their comprehensive lipidomic identification and profiling in humans in the absence of ocular inflammation and comparatively analyze these compounds in the eye liquids of rabbits, the species often employed in investigative ophthalmology.

Methods

Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for qualitative and quantitative characterization of lipid compounds in the analyzed samples.

Results

A total of 28 lipid compounds were identified, including phospholipid derivatives and PUFAs, as well as 22 oxylipins. Whereas the PUFAs included arachidonic, docosahexaenoic and eicosapentaenoic acids, the oxylipins were derived mainly from arachidonic, linoleic and α-linolenic acids. Remarkably, although the concentration of oxylipins in AH was lower compared to TF, these liquids showed pronounced similarity in their lipid profiles, which additionally exhibited noticeable interspecies concordance.

Conclusion

The revealed correlations confirm the feasibility of rabbit models for investigating pathogenesis and trialing therapies of human eye disorders. The identified metabolite patterns suggest enzymatic mechanisms of oxylipin generation in AH and TF and might be used as a reference in ocular inflammation studies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

AA:

Arachidonic acid

AEA:

N-arachidonoylethanolamine

AH:

Aqueous humor

ALA:

α-Linolenic acid

COX:

Cyclooxygenase

CYP450:

Cytochrome P450 monooxygenase

DES:

Dry eye syndrome

DHA:

Docosahexaenoic acid

DiHODE:

Dihydroxyoctadecadienoic acid

DiHOME:

Dihydroxyoctadecamonoenoic acid

EPA:

Eicosapentaenoic acid

EpODE:

Epoxyoctadecadienoic acid

EpOME:

Epoxyoctadecamonoenoic acid

HDoHE:

Hydroxydocosahexaenoic acid

HEPE:

Hydroxyeicosapentaenoic acid

HETE:

Hydroxyeicosatetraenoic acid

HODE:

Hydroxyoctadecadienoic acid

HOTrE:

Hydroxyoctadecatrienoic acid

HpODE:

Hydroperoxyoctadecadienoic acid

HpOTrE:

Hydroperoxyoctadecatrienoic acid

LA:

Linoleic acid

LOX:

Lipoxygenase

LT:

Leukotriene

Lyso-PAF:

Lyso-platelet-activating factor

OEA:

Oleoylethanolamide

PG:

Prostaglandin

PUFAs:

Polyunsaturated fatty acids

TF:

Tear fluid

UPLC-MS/MS:

Ultra-performance liquid chromatography-tandem mass spectrometry

References

  1. Acar, U., Acar, D. E., Tanriverdi, C., Acar, M., Ozdemir, O., Erikci, A., et al. (2017). Prostaglandin E2 levels of aqueous and vitreous humor in ketorolac 04% and Nepafenac 01% administered healthy rabbits. Ocular Immunology and Inflammation, 25(3), 323–327. https://doi.org/10.3109/09273948.2015.1116587.

  2. Ambaw, Y. A., Chao, C., Ji, S., Raida, M., Torta, F., Wenk, M. R., et al. (2018). Tear eicosanoids in healthy people and ocular surface disease. Scientific Reports. https://doi.org/10.1038/S41598-018-29568-3.

  3. Aragona, P., Bucolo, C., Spinella, R., Giuffrida, S., & Ferreri, G. (2005). Systemic omega-6 essential fatty acid treatment and PGE(1) tear content in Sjogren's syndrome patients. Investigative Ophthalmology & Visual Science, 46(12), 4474–4479. https://doi.org/10.1167/iovs.04-1394.

  4. Baksheeva, V. E., Tiulina, V. V., Tikhomirova, N. K., Gancharova, O. S., Komarov, S. V., Philippov, P. P., et al. (2018). Suppression of light-induced oxidative stress in the retina by mitochondria-targeted antioxidant. Antioxidants (Basel),. https://doi.org/10.3390/antiox8010003.

  5. Barot, M., Patel, M., Kwatra, D., & Mitra, A. K. (2012). Transporter-metabolism interplay in the eye. Woodhead Publishing Series in Biomedicine, 39, 229–248. https://doi.org/10.1533/9781908818317.229.

  6. Carreno, E., Portero, A., Herreras, J. M., Garcia-Vazquez, C., Whitcup, S. M., Enriquez-de-Salamanca, A., et al. (2017). Cytokine and chemokine tear levels in patients with uveitis. Acta Ophthalmologica, 95(5), e405–e414. https://doi.org/10.1111/aos.13292.

  7. Chen, W., Zhao, B., Jiang, R., Zhang, R., Wang, Y., Wu, H., et al. (2015). Cytokine expression profile in aqueous humor and sera of patients with acute anterior uveitis. Current Molecular Medicine, 15(6), 543–549. https://doi.org/10.2174/1566524015666150731100012.

  8. Chistyakov, D. V., Grabeklis, S., Goriainov, S. V., Chistyakov, V. V., Sergeeva, M. G., & Reiser, G. (2018). Astrocytes synthesize primary and cyclopentenone prostaglandins that are negative regulators of their proliferation. Biochemical and Biophysical Research Communications, 500(2), 204–210. https://doi.org/10.1016/j.bbrc.2018.04.040.

  9. Coyle, P. K., & Sibony, P. A. (1986). Tear immunoglobulins measured by ELISA. Investigative Ophthalmology & Visual Science, 27(4), 622–625.

  10. Csukas, S., Paterson, C. A., Brown, K., & Bhattacherjee, P. (1990). Time course of rabbit ocular inflammatory response and mediator release after intravitreal endotoxin. Investigative Ophthalmology & Visual Science, 31(2), 382–387.

  11. Dartt, D. A. (1992). Physiology of tear production. In M. A. Lemp & R. Marquardt (Eds.), The dry eye: A comprehensive guide (pp. 65–99). Berlin: Springer.

  12. Elmasry, K., Ibrahim, A. S., Abdulmoneim, S., & Al-Shabrawey, M. (2019). Bioactive lipids and pathological retinal angiogenesis. British Journal of Pharmacology, 176(1), 93–109. https://doi.org/10.1111/bph.14507.

  13. English, J. T., Norris, P. C., Hodges, R. R., Dartt, D. A., & Serhan, C. N. (2017). Identification and profiling of specialized pro-resolving mediators in human tears by lipid mediator metabolomics. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 117, 17–27. https://doi.org/10.1016/j.plefa.2017.01.004.

  14. Enriquez-de-Salamanca, A., Castellanos, E., Stern, M. E., Fernandez, I., Carreno, E., Garcia-Vazquez, C., et al. (2010). Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Molecular Vision, 16, 862–873.

  15. Feng, S. F., Yu, H. H., Yu, Y., Geng, Y., Li, D. L., Yang, C., et al. (2018). Levels of inflammatory cytokines IL-1 beta, IL-6, IL-8, IL-17A, and TNF-alpha in aqueous humour of patients with diabetic retinopathy. Journal of Diabetes Research. https://doi.org/10.1155/2018/8546423.

  16. Fielder, A. R., & Rahi, A. H. (1979). Immunoglobulins of normal aqueous humour. Transactions of the Ophthalmological Societies of the United Kingdom, 99(1), 120–125.

  17. Forrester, J. V., Kuffova, L., & Dick, A. D. (2018). Autoimmunity, autoinflammation, and infection in uveitis. American Journal of Ophthalmology, 189, 77–85. https://doi.org/10.1016/j.ajo.2018.02.019.

  18. Gabbs, M., Leng, S., Devassy, J. G., Monirujjaman, M., & Aukema, H. M. (2015). Advances in our understanding of oxylipins derived from dietary PUFAs. Advances in Nutrition, 6(5), 513–540. https://doi.org/10.3945/an.114.007732.

  19. Goel, M., Picciani, R. G., Lee, R. K., & Bhattacharya, S. K. (2010). Aqueous humor dynamics: A review. The Open Ophthalmology Journal, 4, 52–59. https://doi.org/10.2174/1874364101004010052.

  20. Hillier, R. J., Ojaimi, E., Wong, D. T., Mak, M. Y. K., Berger, A. R., Kohly, R. P., et al. (2017). Aqueous humor cytokine levels as biomarkers of disease severity in diabetic macular edema. Retina, 37(4), 761–769.

  21. Ibanez, C., Mouhid, L., Reglero, G., & de Molina, A. R. (2017). Lipidomics insights in health and nutritional intervention studies. Journal of Agricultural and Food Chemistry, 65(36), 7827–7842. https://doi.org/10.1021/acs.jafc.7b02643.

  22. Irkec, M. T., Orhan, M., & Erdener, U. (1999). Role of tear inflammatory mediators in contact lens-associated giant papillary conjunctivitis in soft contact lens wearers. Ocular Immunology and Inflammation, 7(1), 35–38.

  23. Johnson, M. W. (2009). Etiology and treatment of macular edema. American Journal of Ophthalmology, 147(1), 11–21. https://doi.org/10.1016/j.ajo.2008.07.024.

  24. Kulkarni, P. S. (1991). The role of endogenous eicosanoids in rabbit-intraocular inflammation. Journal of Ocular Pharmacology, 7(3), 227–241.

  25. Liclican, E. L., & Gronert, K. (2010). Molecular circuits of resolution in the eye. The Scientific World Journal, 10, 1029–1047. https://doi.org/10.1100/tsw.2010.99.

  26. Lim, A., Wenk, M. R., & Tong, L. (2015). Lipid-based therapy for ocular surface inflammation and disease. Trends in Molecular Medicine, 21(12), 736–748. https://doi.org/10.1016/j.molmed.2015.10.001.

  27. Liminga, M., Von Malmborg, A., & Oliw, E. (1994). Lipoxygenases in human, monkey, and bovine corneal epithelia. Annals of the New York Academy of Sciences, 744, 317–319. https://doi.org/10.1111/j.1749-6632.1994.tb52751.x.

  28. Liu, J. H. K. (2000). Circadian variations of prostaglandins in the rabbit aqueous humor. Journal of Ocular Pharmacology and Therapeutics, 16(1), 49–54. https://doi.org/10.1089/jop.2000.16.49.

  29. Mahlberg, K., Uusitalo, R., Palkama, A., & Tallberg, T. (1987). Phospholipase A2, leukotriene C4 and prostaglandin E2 levels in aqueous humour of guinea pigs with experimental S-antigen induced autoimmune uveitis. Current Eye Research, 6(2), 321–335.

  30. Maihofner, C., Schlotzer-Schrehardt, U., Guhring, H., Zeilhofer, H. U., Naumann, G. O. H., Pahl, A., et al. (2001). Expression of cyclooxygenase-1 and-2 in normal and glaucomatous human eyes. Investigative Ophthalmology & Visual Science, 42(11), 2616–2624.

  31. Mastropasqua, R., D'Aloisio, R., Di Nicola, M., Di Martino, G., Lamolinara, A., Di Antonio, L., et al. (2018). Relationship between aqueous humor cytokine level changes and retinal vascular changes after intravitreal aflibercept for diabetic macular edema. Scientific Reports. https://doi.org/10.1038/S41598-018-35036-9.

  32. Matsuo, T. (2004). Prostaglandins F2alpha and E2 in aqueous humor of patients with cataract surgery. Journal of Ocular Pharmacology and Therapeutics, 20(2), 101–106. https://doi.org/10.1089/108076804773710768.

  33. Mieyal, P. A., Dunn, M. W., & Schwartzman, M. L. (2001). Detection of endogenous 12-hydroxyeicosatrienoic acid in human tear film. Investigative Ophthalmology & Visual Science, 42(2), 328–332.

  34. Min, S. H., Lee, T. I., Chung, Y. S., & Kim, H. K. (2006). Transforming growth factor-beta levels in human aqueous humor of glaucomatous, diabetic and uveitic eyes. Korean Journal of Ophthalmology, 20(3), 162–165. https://doi.org/10.3341/kjo.2006.20.3.162.

  35. Nathan, H., Naveh, N., & Meyer, E. (1994). Levels of prostaglandin E2 and leukotriene B4 in tears of vernal conjunctivitis patients during a therapeutic trial with indomethacin. Documenta Ophthalmologica Advances in ophthalmology, 85(3), 247–257.

  36. Nussdorf, J., Manalac, J., Lu, Y., Hong, S., & Bazan, N. (2013). Poly-unsaturated fatty acids in human aqueous humor. Investigative Ophthalmology & Visual Science, 54(15), 16.

  37. Panthi, S., Chen, J., Wilson, L., & Nichols, J. J. (2019). Detection of lipid mediators of inflammation in the human tear film. Eye & Contact Lens, 45(3), 171–181. https://doi.org/10.1097/ICL.0000000000000551.

  38. Pflugfelder, S. C., Corrales, R. M., & de Paiva, C. S. (2013). T helper cytokines in dry eye disease. Experimental Eye Research, 117, 118–125. https://doi.org/10.1016/j.exer.2013.08.013.

  39. Pieragostino, D., D'Alessandro, M., di Ioia, M., Di Ilio, C., Sacchetta, P., & Del Boccio, P. (2015). Unraveling the molecular repertoire of tears as a source of biomarkers: beyond ocular diseases. Proteomics Clinical applications, 9(1–2), 169–186. https://doi.org/10.1002/prca.201400084.

  40. Pinazo-Duran, M. D., Galbis-Estrada, C., Pons-Vazquez, S., Cantu-Dibildox, J., Marco-Ramirez, C., & Benitez-del-Castillo, J. (2013). Effects of a nutraceutical formulation based on the combination of antioxidants and omega-3 essential fatty acids in the expression of inflammation and immune response mediators in tears from patients with dry eye disorders. Clinical Interventions in Aging, 8, 139–148. https://doi.org/10.2147/CIA.S40640.

  41. Proud, D., Sweet, J., Stein, P., Settipane, R. A., Kagey-Sobotka, A., Friedlaender, M. H., et al. (1990). Inflammatory mediator release on conjunctival provocation of allergic subjects with allergen. The Journal of Allergy and Clinical Immunology, 85(5), 896–905.

  42. Rosenberg, E. S., & Asbell, P. A. (2010). Essential fatty acids in the treatment of dry eye. The ocular surface, 8(1), 18–28.

  43. Sack, R. A., Iserovich, P., Sathe, S., Beaton, A., Leonardi, A., Gotlinger, K. H., et al. (2010). Proteomics, lipidomic & angiogenesis-normal & allergic tears. Investigative Ophthalmology & Visual Science, 51(13), 416.

  44. Shim, J., Park, C., Lee, H. S., Park, M. S., Lim, H. T., Chauhan, S., et al. (2012). Change in prostaglandin expression levels and synthesizing activities in dry eye disease. Ophthalmology, 119(11), 2211–2219. https://doi.org/10.1016/j.ophtha.2012.05.038.

  45. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3(3), 211–221. https://doi.org/10.1007/s11306-007-0082-2.

  46. Takai, Y., Tanito, M., & Ohira, A. (2012). Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Investigative Ophthalmology & Visual Science, 53(1), 241–247. https://doi.org/10.1167/iovs.11-8434.

  47. Terao, N., Koizumi, H., Kojima, K., Yamagishi, T., Yamamoto, Y., Yoshii, K., et al. (2018). Distinct aqueous humour cytokine profiles of patients with pachychoroid neovasculopathy and neovascular age-related macular degeneration. Scientific Reports. https://doi.org/10.1038/S41598-018-28484-W.

  48. Thakur, A., & Willcox, M. D. (1998). Cytokine and lipid inflammatory mediator profile of human tears during contact lens associated inflammatory diseases. Experimental Eye Research, 67(1), 9–19. https://doi.org/10.1006/exer.1998.0480.

  49. Thorig, L., van Agtmaal, E. J., Glasius, E., Tan, K. L., & van Haeringen, N. J. (1985). Comparison of tears and lacrimal gland fluid in the rabbit and guinea pig. Current Eye Research, 4(8), 913–920.

  50. Tong, L., Hou, A. H., & Wong, T. T. (2018). Altered expression level of inflammation-related genes and long-term changes in ocular surface after trabeculectomy, a prospective cohort study. Ocular Surface, 16(4), 441–447. https://doi.org/10.1016/j.jtos.2018.06.005.

  51. Tripathi, T., & Alizadeh, H. (2014). Significance of arachidonic acid in ocular infections and inflammation. Inflammation and Cell Signaling. https://doi.org/10.14800/ics.301.

  52. Valentincic, N. V., de Groot-Mijnes, J. D. F., Kraut, A., Korosec, P., Hawlina, M., & Rothova, A. (2011). Intraocular and serum cytokine profiles in patients with intermediate uveitis. Molecular Vision, 17(214–18), 2003–2010.

  53. Vasanthi, M., Prajna, N. V., Lalitha, P., Mahadevan, K., & Muthukkaruppan, V. (2007). A pilot study on the infiltrating cells and cytokine levels in the tear of fungal keratitis patients. Indian Journal of Ophthalmology, 55(1), 27–31. https://doi.org/10.4103/0301-4738.29491.

  54. Volotinen, M., Maenpaa, J., Kankuri, E., Oksala, O., Pelkonen, O., Nakajima, M., et al. (2009). Expression of cytochrome P450 (CYP) enzymes in human nonpigmented ciliary epithelial cells: Induction of CYP1B1 expression by TCDD. Investigative Ophthalmology & Visual Science, 50(7), 3099–3105. https://doi.org/10.1167/iovs.08-2790.

  55. Walter, S. D., Gronert, K., McClellan, A. L., Levitt, R. C., Sarantopoulos, K. D., & Galor, A. (2016). Omega-3 tear film lipids correlate with clinical measures of dry eye. Investigative Ophthalmology & Visual Science, 57(6), 2472–2478. https://doi.org/10.1167/iovs.16-19131.

  56. Wang, J., Wu, Y., Heegaard, S., & Kolko, M. (2011). Cyclooxygenase-2 expression in the normal human eye and its expression pattern in selected eye tumours. Acta Ophthalmologica, 89(7), 681–685. https://doi.org/10.1111/j.1755-3768.2009.01765.x.

  57. Wang, L., Zhang, Z., Koch, D. D., Jia, Y., Cao, W., & Zhang, S. (2016). Anterior chamber interleukin 1beta, interleukin 6 and prostaglandin E2 in patients undergoing femtosecond laser-assisted cataract surgery. The British Journal of Ophthalmology, 100(4), 579–582. https://doi.org/10.1136/bjophthalmol-2015-307586.

  58. Wei, Y., & Asbell, P. A. (2014). The core mechanism of dry eye disease is inflammation. Eye & Contact Lens, 40(4), 248–256. https://doi.org/10.1097/ICL.0000000000000042.

  59. Whitcup, S. M., Nussenblatt, R. B., Lightman, S. L., & Hollander, D. A. (2013). Inflammation in retinal disease. International Journal of Inflammation, 2013, 724648. https://doi.org/10.1155/2013/724648.

  60. Williams, P. A., Marsh-Armstrong, N., Lasker., IIoA,& Howell, G. R. (2017). Neuroinflammation in glaucoma: A new opportunity. Experimental Eye Research, 157, 20–27. https://doi.org/10.1016/j.exer.2017.02.014.

  61. Wolffe, M. (2016). How safe is the light during ophthalmic diagnosis and surgery. Eye, 30(2), 186–188. https://doi.org/10.1038/eye.2015.247.

  62. Zernii, E. Y., Baksheeva, V. E., Iomdina, E. N., Averina, O. A., Permyakov, S. E., Philippov, P. P., et al. (2016a). Rabbit models of ocular diseases: New relevance for classical approaches. CNS & Neurological Disorders Drug Targets, 15(3), 267–291.

  63. Zernii, E. Y., Baksheeva, V. E., Yani, E. V., Philippov, P. P., & Senin, I. I. (2019). Therapeutic proteins for treatment of corneal epithelial defects. Current Medicinal Chemistry, 26(3), 517–545. https://doi.org/10.2174/0929867324666170609080920.

  64. Zernii, E. Y., Gancharova, O. S., Ishutina, I. E., Baksheeva, V. E., Golovastova, M. O., Kabanova, E. I., et al. (2016b). Mechanisms of perioperative corneal abrasions: Alterations in tear film proteome. Biomeditsinskaia khimiia, 62(6), 683–690. https://doi.org/10.18097/PBMC20166206683.

  65. Zernii, E. Y., Golovastova, M. O., Baksheeva, V. E., Kabanova, E. I., Ishutina, I. E., Gancharova, O. S., et al. (2016c). Alterations in tear biochemistry associated with postanesthetic chronic dry eye syndrome. Biochemistry Biokhimiia, 81(12), 1549–1557. https://doi.org/10.1134/S0006297916120166.

  66. Zernii, E. Y., Gancharova, O. S., Baksheeva, V. E., Golovastova, M. O., Kabanova, E. I., Savchenko, M. S., et al. (2017). Mitochondria-targeted antioxidant SkQ1 prevents anesthesia-induced dry eye syndrome. Oxidative Medicine and Cellular Longevity, 2017, 9281519. https://doi.org/10.1155/2017/9281519.

  67. Zernii, E. Y., Gancharova, O. S., Tiulina, V. V., Zamyatnin, A. A., Jr., Philippov, P. P., Baksheeva, V. E., et al. (2018a). Mitochondria-targeted antioxidant SKQ1 protects cornea from oxidative damage induced by ultraviolet irradiation and mechanical injury. BMC Ophthalmology, 18(1), 336. https://doi.org/10.1186/s12886-018-0996-7.

  68. Zernii, E. Y., Nazipova, A. A., Nemashkalova, E. L., Kazakov, A. S., Gancharova, O. S., Serebryakova, M. V., et al. (2018). Light-induced thiol oxidation of recoverin affects rhodopsin desensitization. Frontiers in Molecular Neuroscience, 11, 474. https://doi.org/10.3389/fnmol.2018.00474.

  69. Zhang, Y. N., Liang, Q. F., Liu, Y., Pan, Z. Q., Baudouin, C., Labbe, A., et al. (2018). Expression of cytokines in aqueous humor from fungal keratitis patients. BMC Ophthalmology. https://doi.org/10.1186/S12886-018-0754-X.

  70. Zhao, B., Chen, W., Jiang, R., Zhang, R., Wang, Y., Wang, L., et al. (2015). Expression profile of IL-1 family cytokines in aqueous humor and sera of patients with HLA-B27 associated anterior uveitis and idiopathic anterior uveitis. Experimental Eye Research, 138, 80–86. https://doi.org/10.1016/j.exer.2015.06.018.

  71. Zhao, C., & Shichi, H. (1995). Immunocytochemical study of cytochrome-P450 (1a1/1a2) induction in murine ocular-tissues. Experimental Eye Research, 60(2), 143–152. https://doi.org/10.1016/S0014-4835(95)80004-2.

Download references

Acknowledgements

This study was supported by the Russian Science Foundation (Project No. 16-15-00255). The authors acknowledge the Preclinical Clinical Study Centre of RUDN University and “RUDN University Program 5-100” for their contribution to the development of the procedure of UPLC-MS/MS analysis.

Author information

DVC, MGS, AAZ, PPP and EYZ conceived and designed research. VIK, EVF, OAK, AMB and ENI performed studies involving human participants. VVT, VEB and IIS conducted experiments with animals. DVC, NVA, AAA, SVG and VVC carried out mass-spectrometry analysis. SVG and VVC contributed new reagents or analytical tools. DVC, MGS, AAZ, PPP and EYZ analyzed data. DVC, NVA and EYZ visualized the results. EYZ wrote the manuscript. All authors read and approved the manuscript.

Correspondence to Dmitry V. Chistyakov or Evgeni Yu. Zernii.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Informed consent

All participants signed a written declaration of consent approved by the Ethics Committee of Helmholtz National Medical Research Center of Eye Diseases (Moscow, Russia).

Research involving human participants and/or animals

The experimental procedures followed the tenets of The Code of Ethics of the World Medical Association (Declaration of Helsinki). The treatment of the animals was performed according to the 8th edition “Guide for the Care and Use of Laboratory Animals” of the National Research Council and “Statement for the Use of Animals in Ophthalmic and Visual Research” of The Association for Research in Vision and Ophthalmology (ARVO). The study protocols were approved by the Belozersky Institute of Physico-chemical Biology Animal Care and Use Committee (Protocol Number 1/2016).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1836 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chistyakov, D.V., Azbukina, N.V., Astakhova, A.A. et al. Comparative lipidomic analysis of inflammatory mediators in the aqueous humor and tear fluid of humans and rabbits. Metabolomics 16, 27 (2020). https://doi.org/10.1007/s11306-020-1650-y

Download citation

Keywords

  • Aqueous humor
  • Tear fluid
  • UPLC-MS/MS
  • PUFAs
  • Oxylipins
  • COX
  • LOX
  • CYP450